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ABSTRACT
The complex nature of real-world problems calls for heterogeneity
in both machine learning (ML) models and hardware systems. The
heterogeneity in ML models comes from multi-sensor perceiving
and multi-task learning, i.e., multi-modality multi-task (MMMT),
resulting in diverse deep neural network (DNN) layers and compu-
tation patterns. The heterogeneity in systems comes from diverse
processing components, as it becomes the prevailing method to in-
tegrate multiple dedicated accelerators into one system. Therefore,
a new problem emerges: heterogeneous model to heterogeneous sys-
tem mapping (H2H). While previous mapping algorithms mostly
focus on efficient computations, in this work, we argue that it
is indispensable to consider computation and communication si-
multaneously for better system efficiency. We propose a novel
H2H mapping algorithm with both computation and communica-
tion awareness; by slightly trading computation for communica-
tion, the system overall latency and energy consumption can be
largely reduced. The superior performance of our work is evaluated
based on MAESTRO modeling, demonstrating 15%-74% latency
reduction and 23%-64% energy reduction compared with existing
computation-prioritized mapping algorithms. Code is publicly avail-
able at https://github.com/xyzxinyizhang/H2H.

1 INTRODUCTION
As DNNs are applied in more and more complicated tasks, both
machine learning (ML) models and hardware acceleration systems
call for heterogeneity [1, 2] to address emerging challenges. First,
ML algorithms are evolving from handling single-modality single-
task to multi-modality multi-task (MMMT) [1]. For instance, in
the recommendation system, visual and textual data are jointly
learned in a multi-modality fashion [3]; in AR/VR applications,
image, gesture, and speech are jointly learned [4]. Such changes
result in increasingly complicated ML models with larger size and
complex inter-block connections. The top of Fig. 1 depicts hetero-
geneous ML models as well as a real-life model, VlocNet [5], for
semantic visual localization. Second, recent advanced systems are
introducing great heterogeneity by integrating diverse accelera-
tion components with different capabilities to pursue low latency
and high energy efficiency. For example, at the System-on-Chip
(SoC) level, Xilinx Versal [6], Nvidia Xavier [7], and Tesla FSD [8]
integrate various processing components on a single chip. At the
cloud level, Microsoft’s Brainwave [2] and AWS [9] are composed
of multiple FPGAs which can be flexibly reconfigured. In this paper,
we target a cloud-scale multi-FPGA [2] as the target system archi-
tecture, shown in the bottom part of Fig. 1, where each leaf device
is an FPGA that can be configured as an arbitrary accelerator.

We refer to mapping and scheduling a heterogeneous ML model
onto a heterogeneous system as H2H. The H2H problem is non-
trivial because of the following complexities. (1) Computation
Awareness. The heterogeneous MMMT model components can
vary largely in terms of layer type, layer shape, and data dimension.
For instance, an MMMT model can be composed of convolution
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Figure 1: The overview of H2H mapping and scheduling:
from heterogeneous models to heterogeneous system.

(Conv), fully connected (FC), long short-term memory (LSTM), and
transformer layers, with significantly different dataflow patterns
and preferred accelerator architectures [10]. A first challenge is
revealed, how to map layers to the desirable accelerators, suit-
able for their computation patterns. (2) Communication Aware-
ness. Computation-prioritizedmapping does not necessarily lead to
global best performance if communication, i.e., data transfer across
different accelerators, is ignored. Fig. 2 demonstrates the difference
between computation-prioritized mapping and communication-
aware mapping: the former maps each layer purely based on its
preferable dataflow pattern, while the latter slightly sacrifices com-
putation efficiency but in turn reduces the overall system latency by
avoiding expensive data transfer. Thus, a second challenge emerges,
as modern MMMT models have more complex dependencies (e.g.,
the cross-layer connections in VlcoNet [5] in Fig. 1), the data trans-
fer overhead and optimization difficulty become exaggerated.

Existing mapping algorithms for DNNs are primarily prioritized
based on computation. For instance, Fowers et al. [2] improve a sin-
gle accelerator computation efficiency by augmenting the dataflow,
but do not discuss system-level cross-accelerator communication.
Chen et al. [11] map DNN layers to different accelerators to fully
utilize DSP and RAM resources; Kwon et al. [10] propose the state-
of-the-art mapper, which improves the convolution efficiency by
65% by mapping Conv layers to different styles of accelerators such
as Eyeriss, NVDLA, and Shi-diannao [12–14]. The data transfer
overhead, however, is not considered.
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To address the discussed challenges and limitations, in this work,
we propose the first H2H mapping algorithm with both com-
putation and communication awareness, aiming at system-
level formulation, modeling, and optimization. We first formulate
the H2H problem using two graphs to depict the model layer depen-
dency and accelerator execution order. We then build a system-level
modeling infrastructure to model arbitrary heterogeneous systems,
based on each accelerator’s computation and communication per-
formance models. Guided by the infrastructure, we propose an H2H
mapping algorithm, aiming to largely reduce system overall latency
and energy. We summarize our contributions as follows:
• H2H problem formulation and system modeling. We for-
mulate the H2H problem as two directed graphs to describe
layer dependency of the heterogeneous model and accelera-
tor execution order in the heterogeneous system. We then de-
velop a configurable system-level infrastructure based on MAE-
STRO [15], which takes arbitrary accelerators with user-defined
performance models in a plug-in manner to obtain system la-
tency and energy.
• H2H mapping algorithm We propose an H2H mapping algo-
rithm with both computation and communication awareness,
including computation-prioritized mapping, weight locality and
activation transfer optimization, and data locality aware remap-
ping. An optimized mapping can be found within seconds.
• Performance evaluation. We comprehensively evaluate our
mapping algorithm on the infrastructure using 6 real-world het-
erogeneous DNN models on a heterogeneous system composed
of 12 off-the-shelf accelerators. We achieve 15% to 74% latency re-
duction and 23% to 64% energy reduction compared with existing
computation-prioritized mapping algorithms.
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Figure 2: An example of communication-prioritized map-
ping and communication-aware mapping.

2 BACKGROUND AND MOTIVATION
HeterogeneousMLModel.Modern real-life ML applications usu-
ally involve multiple inputs and handle multiple tasks simultane-
ously, i.e., multi-modal multi-task (MMMT) [1]. Multi-modal mod-
els aim to process and relate information from multiple sources to
capture the correspondences between modalities, while multi-task
models aim to efficiently enforce cross-task information exchange
for improving performance and robustness. Such MMMT mod-
els expose great heterogeneity with various layer types, complex
inter-layer connections, and data exchange. In practice, convolu-
tion layers are widely seen in vision tasks; FC layers are mostly
used in small-scale data extraction; LSTM/Transformer layers are
prevalent in text and language tasks [16]. Different applications can

Table 1: System Performance Modeling Parameters

Acc Type Parameters Explanation

Conv <N, M, R, C, K, S>
ofm_channel_num, ifm_channel_num,

ofm_height, ofm_width, kernel_size, stride
FC <N,M> in_features, out_features

LSTM <N,H,L> in_size, hidden_szie, layers
– 𝐵𝑊𝑎𝑐𝑐 accelerator-to-host bandwidth
– 𝑀𝑎𝑐𝑐 local DRAM size

have largely varied layer types with different preferable computing
patterns, accelerator designs, and data transfer cost.
Heterogeneous System. A configurable multi-FPGA system is
one representative heterogeneous system, since each FPGA can be
flexibly configured with different accelerator architectures, such as
Eyeriss [12], NVDLA [13], and Shi-diannao [14]. Microsoft FPGA
datacenter [2] is a good heterogeneous example as shown in Fig. 1
(bottom). Heterogeneous systems can largely improve computation
efficiency, because a certain accelerator is typically optimized only
for a subset of ML layers, and different layers are expected to be
mapped to their specific accelerators.
Motivation. Given the complexity of ML models and heteroge-
neous systems, it is non-trivial to find a good H2H mapping that
can effectively balance computation and communication. First,
DNN accelerators are highly specialized for certain dataflows. For
instance, NVDLA [13] optimizes convolution channel-wise paral-
lelism, while Shi-diannao [14] optimizes feature-map-wise paral-
lelism. Model layers should be mapped to the accelerators with
preferable computation patterns to reduce computation latency.
Most existing approaches highly prioritize the computation pattern
but usually ignore cross-layer communication [10]. Second, there
are also communication-prioritized mapping algorithms [17] by
forming task clusters and assigning a cluster to a processor. How-
ever, this may largely hurt the computing efficiency since the tasks
within the same cluster do not necessarily run efficiently on the
same accelerator. Meanwhile, the heavy cross-layer dependency
(cross-talk) in the heterogeneous models may also lead to ineffective
clustering. Third, existing mapping algorithms lack the formulation
of DNN models and system-level information such as accelerators’
architecture and dataflow. Without hardware awareness, existing
algorithms cannot be directly and efficiently applied. Therefore, a
hardware-aware mapping algorithm that considers both computa-
tion and communication simultaneously is needed.

The cornerstone for communication reduction is data locality
by efficiently utilizing accelerators’ local DRAM. In a multi-FPGA
system, each FPGA is equippedwith a local DRAM,which can be uti-
lized to store model weights and to buffer intermediate activations
of two adjacent layers to reduce cross-FPGA data movement. The
challenge is that the computation-prioritized mapping can achieve
best efficiency per FPGA, but the overall performance may be com-
promised due to the transmission cost (and vice versa). Therefore,
we propose an H2H mapping algorithm, which can jointly consider
the benefit of high data locality and suitable computation patterns.

3 SYSTEM FORMULATION
Heterogeneous ML Model. As shown in Fig. 1, a heterogeneous
model has complicated dependencies especially for cross-talk con-
nections. It is natural to formulate such a model as a directed graph
𝐺𝑚𝑜𝑑𝑒𝑙 = (𝑉 , 𝐸), where the vertices represent the layers and the



edges represent the dependencies. In𝐺𝑚𝑜𝑑𝑒𝑙 , each node holds layer
information such as Conv, FC, LSTM, etc., as well as their data di-
mension (e.g., feature map size). We consider three types of popular
accelerators with the layer parameters summarized in Table 1.
Heterogeneous System. We also formulate the multi-FPGA sys-
tem as a directed graph 𝐺𝑠𝑦𝑠 = {𝐺𝐴𝑐𝑐𝑖 }, where each sub-graph
𝐺𝐴𝑐𝑐𝑖 is a computation graph representing the layers’ execution
scheduling on the 𝑖-th FPGA accelerator 𝐴𝑐𝑐𝑖 . Initially, each graph
𝐺𝐴𝑐𝑐𝑖 is empty without any mapping. An example of 𝐺𝑚𝑜𝑑𝑒𝑙 and
initial𝐺𝑠𝑦𝑠 with three initial empty𝐴𝑐𝑐𝑖 are shown in Fig. 3’s input
block. After mapping, each 𝐺𝐴𝑐𝑐𝑖 will be composed of nodes from
𝐺𝑚𝑜𝑑𝑒𝑙 in their execution order.

In this work, we consider a multi-FPGA system proposed in [2],
where each FPGA is connected to a host node via Ethernet switches,
enabling FPGA-to-FPGA and FPGA-to-host communication. The
host node distributes data to each FPGA’s local DRAM memory,
whose capacity typically ranges from 512 MB to 8 GB [16] and
is usually used as additional buffers to mitigate the scarcity of
FPGA on-chip memory. The Ethernet speed ranges from 1 G to
10 G Ethernet (0.125 to 1.25 GB/s) in cloud-FPGA [9], and FPGA
local DRAM speed ranges from 6.4 GB/s to 460 GB/s [18]. We
consider two most important system-level parameters, accelerator-
to-host bandwidth and local DRAM size, denoted by 𝐵𝑊𝑎𝑐𝑐 and
𝑀𝑎𝑐𝑐 , respectively, as shown in Table 1.
System Performance Model. We model the overall heteroge-
neous system performance at two levels: individual accelerator, and
the overall system. First, for individual accelerator, there are plenty
of analytical models of different designs, so we directly adopt the
performance models from existing literature, denoted by 𝑃𝑎𝑐𝑐 . For
each accelerator, we consider the following configurable parameters:
(1) 𝐵𝑊𝑎𝑐𝑐 , the accelerator to main memory bandwidth; (2)𝑀𝑎𝑐𝑐 , the
local DRAM size; (3) 𝐿𝑎𝑦𝑒𝑟𝑝𝑎𝑟𝑎 , other layer parameters as shown
in Table 1. For instance, the analytical model for the accelerator
proposed in [19] can be expressed as 𝑃𝐴𝑐𝑐<𝑀𝑎𝑐𝑐 , 𝐿𝑎𝑦𝑒𝑟𝑝𝑎𝑟𝑎> with
its loop tiling setting <𝑅𝑤𝑒𝑖 , 𝐷𝑡𝑦𝑝𝑒 , 𝐹𝑎𝑐𝑐 , 𝐵𝑊𝑑𝑟𝑎𝑚,𝑇𝑚,𝑇𝑛,𝑇𝑟,𝑇𝑐>.
Second, for the system-level performance model, we modify the
MAESTRO for the target multi-FPGA system by allowing customiz-
ing the accelerator-to-host bandwidth as 𝐵𝑊𝑎𝑐𝑐 , which is also con-
figurable by users.

4 PROPOSED H2H MAPPING ALGORITHM
In this section, we discuss our proposed computation and commu-
nication aware H2H mapping algorithm, according to our analyt-
ical model based infrastructure. As shown in Fig. 3 top, there are
four steps. 1 Computation-prioritized mapping. The heteroge-
neous ML model is mapped at layer-granularity, that each layer is
mapped to the accelerator that best fits its computation dataflow,
ignoring all data movement optimizations (i.e., zero data locality).
2 Weight locality optimization. Since each accelerator has its
own local DRAM, we buffer part of the weights in the memory to
maximally avoid weight data movement. 3 Activation transfer
optimization. If two adjacent layers are mapped to the same accel-
erator, their intermediate activation, i.e., the output/input feature
maps (OFM/IFM), will no longer need to transfer and thus latency
can be reduced. 4 Data locality aware re-mapping. This step ex-
plores the trade-off between computation and communication, aim-
ing to largely reduce communication cost with slight computation
efficiency degradation, which still results in overall performance
improvement. The H2H algorithm flow is shown in Algorithm 1.
It takes 𝐺𝑚𝑜𝑑𝑒𝑙 and 𝑃𝐴𝑐𝑐𝑖 as inputs, and produces a mapped and

Algorithm 1: H2H Mapping and Scheduling
Input:𝐺𝑚𝑜𝑑𝑒𝑙 , 𝑃𝐴𝑐𝑐𝑖

Output:𝐺∗
𝑚𝑜𝑑𝑒𝑙

,𝐺∗𝑠𝑦𝑠 = {𝐺∗
𝐴𝑐𝑐𝑖

}, 𝑆𝑦𝑠𝑙𝑎𝑡𝑒𝑛𝑐𝑦 , 𝑆𝑦𝑠𝑒𝑛𝑒𝑟𝑔𝑦
1 Function Computation_Prioritized_Mapping():
2 for nodes in𝐺𝑚𝑜𝑑𝑒𝑙 without predecessors do
3 Enumerate all possible mappings based on 𝑃𝐴𝑐𝑐𝑖

4 Choose the mapping with minimum Δ𝑆𝑦𝑠𝑙𝑎𝑡𝑒𝑛𝑐𝑦

5 Function Weight_Locality_Opt():
6 Knapsack_Solver(𝐺𝑚𝑜𝑑𝑒𝑙 ,𝐺𝑠𝑦𝑠 )
7 𝑆𝑦𝑠𝑙𝑎𝑡𝑒𝑛𝑐𝑦 , 𝑆𝑦𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ←− update_System_Scheduling()

8 Function Activation_Transfer_Opt():
9 for every node pair adjacent in𝐺𝑠𝑦𝑠 do
10 activation_Fusion(node pair)

11 𝑆𝑦𝑠𝑙𝑎𝑡𝑒𝑛𝑐𝑦 , 𝑆𝑦𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ←− update_System_Scheduling()

12 Function Data_Locality_Remapping():
13 Repeat
14 for every 𝑛 ∈ 𝐺𝑚𝑜𝑑𝑒𝑙 do
15 Attempt to remap 𝑛 to its neighbors’ Acc
16 Weight_Locality_Opt()

17 Activation_Transfer_Opt()

18 Δ𝑆𝑦𝑠𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ← update_System_Scheduling()

19 Accept remap if Δ𝑆𝑦𝑠𝑙𝑎𝑡𝑒𝑛𝑐𝑦 < 0

20 Until no more beneficial remapping operations;

scheduled solution (𝐺∗
𝑚𝑜𝑑𝑒𝑙

, 𝐺∗𝑠𝑦𝑠 ) with modeled system latency
and energy (𝑆𝑦𝑠𝑙𝑎𝑡𝑒𝑛𝑐𝑦 , 𝑆𝑦𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ).

4.1 Computation-prioritized Mapping
In the first step, we perform Computation_Prioritized_Mapping.
It assigns the model layers to the accelerators that result in the best
computation performance by assuming zero local DRAM without
any data locality at the accelerator. We use performance model
𝑃𝐴𝑐𝑐𝑖 to estimate the latency of a layer executing on the 𝑖-th accel-
erator, and assume that all the weights and intermediate results go
to the main memory of the host node. To obtain system latency,
the layer scheduling on each accelerator must be determined. To
guarantee a valid scheduling considering layer dependencies es-
pecially across multiple sub-models, the algorithm determines the
mapping and scheduling iteratively. In every iteration, it selects all
the nodes without predecessors from 𝐺𝑚𝑜𝑑𝑒𝑙 as a group, enumer-
ates all possible mappings within the group (multiple nodes can
be mapped to one or more accelerators), and selects the one that
results in the smallest system latency increment.

An example is shown in Fig. 3 1 , where the color of the nodes
represents which accelerator it is mapped to. The gray blocks rep-
resent the accelerator execution, where idle periods are introduced
by layer dependency. Note that, in this step, we assume zero local
DRAM, so that the latency values include both computation and
communication: layer computation, weight transfer from the main
memory, and IFM/OFM transfer from/to the main memory.

4.2 Weight Locality Optimization
Weight_locality_Opt is performed after computation-prioritized
mapping by utilizing the local DRAM of each accelerator. With local
DRAM, weight transfer from main memory can be greatly reduced,
and it is a common practice to buffer part (or all) of theweights of the
DNN layer(s) [16]. In this system, since multiple layers are mapped
to the same accelerator, the layer weights must be selectively stored
in the local DRAM, under a certain memory budget. Therefore,
we propose to use the Knapsack algorithm to store , as much as
possible, weights in the accelerators’ local DRAM to reduce weight
transfer. After pinning weights locally, we first update each layer’s
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Figure 3: H2H mapping algorithm visualization. It includes 4 major steps: (1) computation-prioritized mapping; (2) weight
locality optimization; (3) activation transfer optimization; (4) data locality aware remapping.

latency, and then update the system’s scheduling and overall latency.
Note that, since changing the latency and scheduling of one layer
can affect all its successor layers, we update the layer scheduling
recursively. This is especially efficient for graph structures, since in
each iteration, we only update a node’s direct successor neighbors
without traversing the entire graph. An example is shown in Fig. 3
2 , where the colored blocks represent the layers whose weights
are stored in the local DRAM with reduced latency. The system
latency is also reduced.

4.3 Activation Transfer Optimization
After weight locality optimization, the activation (IFM/OFM) trans-
fer will be optimized by Activation_Transfer_Opt to further re-
duce the overall cost. This is based on the assumption that, if two
adjacent layers are mapped to the same accelerator, their interme-
diate IFM and OFM can be reused locally by taking advantage of
the local DRAM and thus the activation transfer from/to the main
memory can be avoided. We call it activation fusion, which can
be performed recursively, similar to the weight locality optimiza-
tion: for each mapped layer, it checks its successor neighbors for
activation fusion, updates its own and its neighbors’ latency, if
applicable, and recursively updates the system’s overall scheduling.
An example of activation fusion is shown in Fig. 3 3 , where the
starred blocks indicate the layers that are applicable for fusion.

4.4 Data Locality Aware Remapping
The weight and activation optimization are post-optimizations for
communication given a mapping solution. In this step, we execute

Data_Locality_Remapping, for communication-oriented remap-
ping, i.e., initial mapping tuning aiming at largely reducing com-
munication cost. Specifically, for each layer, we define a remapping
operation that re-allocates a layer from its source accelerator to a
new destination accelerator, on which its predecessors and/or suc-
cessors are mapped. This remapping reduces the activation transfer
time by allowing activation fusion, but may increase the compu-
tation latency. The weight transfer latency may be increased or
decreased depending on the available local DRAM capacity of the
destination accelerator. Therefore, to determine the exact effect
of a remapping operation, weight locality and activation transfer
optimization, i.e., step 2 and 3, must be re-executed for every remap-
ping attempt. We adopt a greedy algorithm and perform remapping
attempt for every layer; a remapping is accepted only if it reduces
the system’s overall latency, i.e., the benefit of communication re-
duction outweighs the computation cost increment. The algorithm
terminates when no more layers can be remapped with reduced
overall latency.

An example of locality-aware remapping is shown in Fig. 3 4 .
In this example, layer 3.1 is remapped from Acc2 to Acc1 since its
neighbor layer 3.2 resides on Acc1, so that the activation transfer
between layer 3.1 and layer 3.2 can be reduced. Although in this
example, the scheduling of layer 2.2 cannot move earlier because
of the layer dependency, in most cases, the source accelerator can
reduce its latency because of the memory budgeted for weights is
released and it can execute earlier because it can take the vacated
cycles of the remapped layer.



4.5 Extension for Dynamic Modality Change
The proposed H2H algorithm can be easily extended to handle dy-
namic modality change scenarios which is common in multi-sensor
systems. For instance, a health monitoring system may choose to
turn on and off motion sensors based on the surrounding environ-
ment and the person’s activity [20], and such dynamic modality
change can be as frequent as several times within one second. This
motivates an extendedH2Hmapping for dynamicmodality changes,
where a new mapping with increased or decreased modalities (i.e.,
layers) depends on the previous mapping result to maximally re-use
the buffered weights. The advantage is to avoid weight loading for
frequent modality change.

Therefore, we modify the proposed H2H algorithm as follows for
dynamic modality change. Given the previous mapping and weight
buffering, for a new set of modalities (layers), it prioritizes the layer
mapping if the layer’s weights are already buffered on a certain
accelerator. Then, we repeat steps 1 to 4 with a modified Knapsack
algorithm, where part of the weight allocation is determined.

5 EVALUATIONS
5.1 Evaluation Settings
Heterogeneous models. Table 2 summarizes 6 heterogeneous
DNNmodels used in evaluation, spanning different domains includ-
ing Augmented Reality (AR), Face Recognition, Sentiment Analysis,
Activity Recognition, and Emotion Recognition. Most models use
Convolution Neural Networks (ResNet, VGG, VD-CNN, and their
variants) as backbones, and there are typically 3 to 5 backbones
placed together for MMMTwith cross-backbone data dependencies.
Heterogeneous accelerators.We survey 12 state-of-the-art FPGA-
based Convolution/FC/LSTM accelerators and summarize them in
Table 3. We replicate their performance models based on the origi-
nal papers; we honor the local DRAM capacity𝑀𝑎𝑐𝑐 based on the
FPGA boards used, ranging from 512 MB to 8 GB [16].
Systemmodeling.WemodifyMAESTRO [15] to a system-level in-
frastructure to model the cloud-scale multi-FPGA system as shown
in Fig. 1 (bottom) [2]. The Ethernet speed 𝐵𝑊𝑎𝑐𝑐 between FPGAs
and main memory ranges from 1 G to 10 G Ethernet (0.125 to 1.25
GB/s) [9]. The system latency and energy are modeled based on
the values reported in the accelerator papers in Table 3.

Table 2: Heterogeneous (MMMT) models

Domain Model Backbones Para.

Augmented Reality VLocNet [5] ResNet-50 variants 192M
Face Recognition CASUA-SURF [21] ResNet-18 variants 13.2M
Sentiment Analysis VFS [22] VGG and VD-CNN variants 365M
Face Recognition FaceBag [23] ResNet variants 25M

Activity Recognition CNN-LSTM [24] ConvNet and LSTM variants 16M
Emotion Recognition MoCap [25] Convolution and LSTM unit 8M

5.2 H2H mapping performance
Baseline. As discussed in Section 2, existing mapping algorithms
are computation-prioritized that strive for finding the most suitable
accelerators based on the dataflow patterns [10]. This mapping
strategy is the same as the first step in our H2H mapping. To make
a fair comparison, we take the results from H2H mapping after the
second step (Section 4.2) including the weight locality optimiza-
tion, since existing works can also assume local DRAM for the
accelerators.

Table 3: State-of-the-art FPGA DNN accelerators

Name Accelerator Type Optimization FPGA

J.Z [26] Convolution On-chip memory GX1150
C.Z [19] Convolution Channel parallel. VC707
W.J [27] Convolution Memory and Channel ZCU102
J.Q [28] Conv/FC/(LSTM) Computing Generality ZC706
A.C [29] Convolution Loop Optimization XC7Z045
Y.G [30] Conv/FC/LSTM Computing Generality Stratix-V
T. M [31] Convolution Loop Optimization GX1150
A.P [32] Convolution Winograd Stratix-V
X.W [33] Convolution Systolic Array GT1150
S.H [34] LSTM/FC Deep Pipeline XCKU060
X.Z [35] LSTM Gate Parallelism PYNQ-Z1/VC707
B.L [36] LSTM Deep Pipeline VCU118

Latency and Energy Reduction. In Fig. 4, we present the latency
and energy reduction of the 6 heterogeneous DNN models. We test
the H2H mapping algorithm under different network bandwidth
configurations (𝐵𝑊𝑎𝑐𝑐 ): Low- (0.125 GB/s); Low (0.15 GB/s); Mid-
(0.25 GB/s); Mid (0.5 GB/s); High (1.25 GB/s). The x-axis refers to the
four steps in H2Hmapping algorithm, and the y-axis is the modeled
system latency in seconds and energy in joule. The H2H mapping
algorithm achieves 15% to 74% system latency reduction and 23%
to 64% energy reduction compared with the baseline mapping [10]
when the system is bandwidth bounded, i.e., under the bandwidth
Low- setting. With high bandwidth, the H2H still reduces overall
latency by 10% to 50%. In half of the evaluated cases, we achieved
over 60% latency reduction.

The detailed latency reduction after each step is shown in Table 4.
Since we regard the second step as the baseline, we present the
absolute latency values (in seconds) for steps 1 and 2 and the relative
values for steps 3 and 4 compared with step 2. Apparently, when the
bandwidth increases, the reduction decreases, but even with high
bandwidth, network CNN-LSTM and MoCap still reduce latency
by almost half from H2H mapping.
H2H performance analysis. In Fig. 5(a), we visualize the commu-
nication and computation latency ratio using the mapping results
under Bandwidth Low- of the six models. Note that after our H2H
mapping, the computation ratio greatly increases (yellow bars),
where MoCap increases from 21% to 94%, indicating that the com-
munication overhead is largely reduced. We also show the H2H
mapping algorithm execution time in Fig. 5(b). The search time is
consistently low across different DNNmodels, less than one second.
The VLocNet requires longer search time since it consists of 141
layers; the CNN-LSTM and MoCap are significantly faster since
they consist of less than 30 layers.

6 CONCLUSION
In this work, we proposed a computation and communication aware
H2H algorithm, aiming at system-level formulation, modeling, and
optimization for mapping heterogeneous models to heterogeneous
systems. We achieve up to 74% system latency reduction and 64%
energy reduction. The H2H is designed with high flexibility, as
it is configurable at system level and adopts a plug-in manner
for accelerators. It can be easily configured to catch up with the
latest advancements in deep learning society, such as the growing
size of DNN models, increasing intensity of accelerator computing
resource, and system network bandwidth.
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