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Sébastien Ollivier, Sheng Li, Yue Tang, Stephen Cahoon, Ryan Caginalp, Chayanika Chaudhuri,
Peipei Zhou, Xulong Tang, Jingtong Hu, and Alex K. Jones
University of Pittsburgh

Abstract—Edge computing is a popular paradigm for accelerating light- to medium-weight
machine learning algorithms initiated from mobile devices without requiring the long
communication latencies to send them to remote datacenters in the cloud. Edge servers
primarily consider traditional concerns such as SWaP constraints (Size, Weight, and Power) for
their installations. However, such metrics are not entirely sufficient to consider environmental
impacts from computing given the significant contributions from embodied energy and carbon.
In this paper we explore the tradeoffs of hardware strategies for convolutional neural network
acceleration engines considering inference and on-line training. In particular, we explore the use
of mobile GPU accelerators, recently released edge-class FPGAs, and novel PIM using DRAM
and emerging Racetrack memory. Given edge servers already employ DRAM and sometimes
GPU accelerators, we consider the sustainability implications using breakeven analysis of
replacing or augmenting DDR3 with Racetrack memory. We also consider the implications for
provisioning edge servers with different accelerators using indifference analysis. While mobile
GPUs are typically much more energy efficient, their significant embodied energy can make them
less sustainable then PIM solutions in certain scenarios that consider activity time and compute
effort.

INTRODUCTION

DEEP neural networks have become a popu-
lar algorithm used by a variety of applica-

tions on mobile devices including smart phones,
autonomous vehicles, robotics, unmanned aerial
vehicles, and other smart and connected devices.
Convolutional Neural Networks (CNNs) have
been demonstrated as an effective deep learning
implementation methodology that trades compu-
tational complexity for accuracy.

There have been many proposals to improve
the performance and energy efficiency of CNN
inference. However, these algorithms may still be
too compute and data intensive to execute directly
on mobile nodes that typically have limited en-
ergy and computational capabilities. Additionally,
due to changes or drift in input datasets over time,

it is sometimes necessary to adjust the parame-
ters of CNN inference algorithms through online
training. Online training is typically intractable
for mobile connected devices.

Thus, edge servers, now often being deployed
in conjunction with advanced (e.g., 5G) wireless
networks, have become a popular target to accel-
erate CNN inference and training. Moreover, due
to their deployment in the field, edge servers must
operate under size, weight, and power (SWaP)
constraints, while serving many concurrent re-
quests from mobile clients. Thus, to acceler-
ate CNNs, these edge servers often use energy-
efficient accelerators, sometimes employing re-
duced precision approximate models. Their goal
is to achieve fast response time while balancing
requests from multiple clients and maintaining a
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low operational energy cost.
Moreover, keeping online training local to

edge server nodes avoids communicating large
datasets from edge to cloud servers [1]. However,
online training typically requires much higher
precision and floating-point computation. This
can be a heavier burden to edge servers compared
to inference.

While edge servers can dramatically improve
capabilities to deploy deep learning more broadly,
this proliferation of lightweight computing from
mobile devices and medium-weight computing
from edge servers can create negative environ-
mental impacts. Manufacturing new mobile and
edge computing infrastructure requires problem-
atic emissions of everything from carcinogens
to volatile organic compounds, not to mention
green-house warming gases. These include most
notably carbon dioxide (CO2) but also methane
(CH4) and nitrous oxide (N2O), among others.

As such, there is a significant and growing
aspect of environmental impacts that come from
embodied impacts of computing [2]. Embodied
impacts include the energy, green-house warming
gases (GWGs), waste water generation, etc., from
manufacturing computing infrastructure, particu-
larly the semiconductor elements that form the
heart of all computing systems.

Recent evidence shows that for cloud servers,
embodied impacts are equally as high as opera-
tional (run-time) effects [3]. For mobile devices
and compact computers, embodied impacts can
reach 80-90% of total life-cycle impacts and that
these impacts are dominated by their integrated
circuits [3], [4]. Thus, for systems already op-
timized for SWaP constraints, embodied energy
will be a higher proportion of the total energy
footprint, making its amortization an important
sustainability goal. Accelerated deployment of
mobile and edge systems to support deep learning
exacerbate these concerns.

Specialty processing units, including field-
programmable gate arrays (FPGAs) and graphics-
processing units (GPUs), can accelerate CNN ap-
plications while meeting low operational energy
constraints. However, this operational efficiency
comes at the cost of increasing the silicon area
of these edge systems. This creates a significant
tradeoff between embodied energy from including
accelerators and the operational energy impacts

from executing deep learning algorithms.
In this paper we explore several state-of-

the-art proposals to accelerate CNN inference
and training using GPUs, FPGAs, and process-
ing in memory (PIM) with commodity DRAM
and recently proposed Racetrack Memory (RM)
PIM [5], [6]. Our comparison considers the main
two phases of energy consumption of embodied
and operational energy [2]. Thus, we explore
total lifetime energy efficiency of state-of-the-art
computing targets allowing a evaluation of the
sustainability of these different system choices.

We select energy as our metric as it bridges
the manufacturing and operational phase of the
system into a single metric that can be directly
compared. However, we will also discuss how
these energy values inform other environmental
metrics including GWG when including electrical
grid mix profiles.

In particular, this paper makes the following
contributions:

• We provide estimates of the embodied energy
to fabricate edge class GPU, FPGA, and in-
memory computation comparison points.

• We characterize the operational power and
performance of representative CNN applica-
tions for edge-scale execution including both
inference and training.

• We conduct indifference and breakeven anal-
yses of different target systems and usage
scenarios to determine holistic sustainability
calculations.

• We explore the carbon impacts of these sys-
tems for different grid-mix choices.

In the next section we discuss the background
and related work to conduct these analyses.

Background
In this section we provide a background on

sustainability analysis through life-cycle assess-
ment, indifference, and breakeven analyses. We
also provide background on Racetrack memory
including how it is used for PIM and its re-
quired extension for life-cycle assessment. We
also mention the features about CNN inference
and training that lead to different assumptions
about datatypes.
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Life-cycle Assessment
The primary source of environmental impacts

for computing systems comes from the integrated
circuits (ICs) that implement the core functional-
ity of processing, memory, and data storage [2].
To determine the holistic environmental impacts
in terms of energy, GWG, and other concerns
of a product or process, such as semiconductor
fabrication, typically involves a technique called
Life Cycle Assessment (LCA) [7]. LCA is most
accurate when a detailed analysis of the process is
used to determine the assessment, but sometimes
relative costs to similar processes can be used
as a coarse-grain assessment called economic
input/ouput LCA.

Semiconductor process LCA explores the im-
pact of the different steps of the approximately
20 masks required to build CMOS circuits. These
masks can be broken down into their individual
steps, such as deposition, lithography, etching,
metrology, etc., per wafer. As the technology
scales to smaller feature sizes, these steps become
increasingly costly due to several factors. These
include slower throughput and higher energy
cost of the machines, more costly high fidelity
clean rooms, and more process steps required
for things like multipatterning lithography, high-
κ dielectrics, more exotic transistor shapes and
materials (e.g., III-V gate channels). A particular
culprit is multipatterning [4] and extreme ultravi-
olet (EUV) lithography steps [8].

Relatively few process LCAs have been un-
dertaken of semiconductor fabrication. One as-
sessment considered CMOS, Flash, and DRAM
fabrication covering technologies from 350 nm
down to 32 nm [9]. A hybrid (mixing process and
economic) LCA combined process technology
estimations with reported cost trends to create a
semiconductor fabrication model estimating em-
bodied energy scaling to 7 nm [4]. Recently, a
process LCA was conducted for IC fabrication
from 28 nm to 3 nm feature sizes [8].

Additional background on LCA for semicon-
ductors can be found in the supplementary mate-
rial.

Indifference and Breakeven analyses
One motivation to use a single metric of

energy for both manufacturing and operational
sustainability evaluation of the system is to allow

Figure 1. Anatomy of a domain-wall memory
nanowire.

quantitative comparison metrics such as indiffer-
ence and breakeven analyses. To compare two
design choices of the system for deployment we
can use the indifference formula tI , as shown in
Eq. 1 [10]. For a system with higher embodied
energy (M ) and lower operational energy (P ), tI
is the time at which the increase in embodied en-
ergy will be completely amortized by the savings
in operational energy.

Thus, if the proposed service time t < tI
the architecture with the lower embodied energy
minimizes environmental impact. In contrast, for
a proposed service time t > tI the architecture
with the lower operational energy minimizes im-
pact. If one choice is lower in both embodied and
operational energy, then indifference analysis is
not needed and the lower energy system can be
selected independent of service time.

A similar calculation can be considered for the
breakeven time tB , also defined in Eq. 1 [10].
Consider the case that an existing system is
already deployed. Replacing the existing system
is like assuming embodied energy of the deployed
system is 0. Thus, tB is the time it takes for the
replacement system to overcome the embodied
energy of the replacement through operational
energy savings, i.e., tB = tI when M0 = 0.

tI =
M1 −M0

P0 − P1

tB =
M1

P0 − P1

(1)

While we characterize several accelerators in
this work for CNN acceleration, we also consider
an exotic technology that uses spintronics to store
data and has been explored for PIM called Race-
track memory [11]. We provide some background
on RM in the next section.

Racetrack Memory
Spintronic RM [11] is made of ferromagnetic

nanowires consisting of many magnetic domains
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separated by domain walls (DWs), as shown in
Figure 1. Each domain has its own magnetization
direction such that binary values are represented
by the magnetization direction of each domain,
either parallel/antiparallel to a fixed reference.
For a planar nanowire, several domains share an
access point for read and write operations [12].

RM is similar to and has many of the same
advantages as STT-MRAM, including high en-
durance, fast access time, low energy. Energy is
particularly low as static energy is nearly elimi-
nated due to the device’s non-volatility. RM can
have a density ≤2F2 because it can store multiple
bits in a nanowire accessed using one transistor.
In contrast, STT-MRAM requires 6-50F2 [13].

Hence RM, which was originally conceived
for secondary storage, has been proposed at
several memory levels, from L1 cache to main
memory. RM achieves this density by requiring
shifting if data is not aligned with an access
point. Shifting occurs through DW motion in the
nanowire.

Racetrack Memory Architecture

DW motion is controlled by applying a short
current pulse laterally along the nanowire. Ran-
dom access requires shifting the target domain to
align it with an access point (dark blue) and apply
a current to read or write the target bit. To avoid
data loss when shifting, the blue domains store
actual data while the grey domains are overhead
domains to prevent data loss. Shift-based writ-
ing (Read/Write Port) [14] allows slower current
writes to be replaced with orthogonal shifts from
fixed magnetic alignment domains to reduce la-
tency and energy.

RM structures are typically built by bundling
multiple tracks that are shifted together. Each
track represents a different bit that can be ac-
cessed in parallel, while different memory ad-
dresses can be accessed by shifting the bundled
tracks as a group to other positions [15]. Larger
memory structures can be build from these groups
of tracks to form tiles, subarrays, banks, etc. [5].
Thus, the biggest challenge for RM is to accel-
erate and minimize shifting for fastest and more
energy efficient operation [11].

Processing in Racetrack Memory
Processing using memory has recently re-

ceived considerable attention. DRAM-based tech-
niques use multiple row simultaneously [16]
and/or in sequence [17] to allow sensing ampli-
fiers to achieve two-operand bulk bitwise logi-
cal operations. Higher level arithmetic logic is
constructed out of a sequence of these logical
operations.

RM has also received significant attention for
PIM, particularly for deep learning [5], [6], [18].
The state-of-the-art approach uses a multi-domain
read to sense the number of 1’s in a segment of
the nanowire, such as between the two access
points in Figure 1. From this access and 1’s
counting, it is possible to construct multi-operand
bulk bitwise logical operations. The number of
operands is dictated by the size of the multi-
domain read.

Arithmetic structures such as addition can be
constructed by converting a multi-domain read
into a local sum and carry logic. Multiplications
are possible by summation of partial products [5].
Floating-point versions of these operations, par-
ticularly multiply-accumulate, can be achieved
by using these logical and arithmetic primitives
on the sign, mantissa, and exponent components
individually [6]. We provide more background on
these ideas in the supplementary document.

Racetrack Memory LCA
RM, like many other novel memories, requires

additional process steps during fabrication to re-
alize the magentic nanowires and access ports.
The process LCA for ICs including RM must
be adjusted to account for the embodied cost of
wafers including these additional steps.

In particular, additional layers of ferromagen-
tic materials and insulators are placed on top of
the completed CMOS layers. Typically these are
added in between the lower levels of the metal
stack. The spintronic devices are composed of
three conceptual layers, a fixed magnetic layer, an
MgO barrier that separates the fixed layer from
the free layer in the form of a nanowire, often
made out of a ferromagentic material like CoFeB.
CoFeB with different doping properties can also
be used for fixed magnetic layers.

In terms of the process steps, they are essen-
tially the same between STT-MRAM and RM,
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which have been studied for the former [19].
Thus, during manufacture, in addition to the
CMOS and metal layers, while circa 10 material
layers are required for the magnetic devices, a
total of three additional mask layers on top of
the circa 20 CMOS layers are required to add
these devices into the evaluation. According to
process LCA study of these devices, they are
composed of three lithography, three dry etching,
three deposition steps, and a polishing step [19].

We provide more background on RM includ-
ing the process LCA methodology in the supple-
mentary material.

Convolutional Neural Networks
CNNs are a popular method to compute deep

learning algorithms. CNNs are dominated by
the convolution operation, which is a windowed
point-wise multiplication accumulation of mul-
tiple channels of input features with a set of
weights to generate output features. As an exam-
ple, for the input features I and weights K of size
N×Rin×Cin and M×N×3×3, respectively,
the convolution operation for the window at m
(output channel index), r (row), c (column) is:

Conv(I,K)(m, r, c) =

N−1∑
n=0

2∑
j=0

2∑
t=0

Km,n,j,t × In,r+j,c+t

where M is the number of output channels, N is
the number of input channels, Rin × Cin is the
size of an input feature map.

While deep learning with CNNs presumes
calculations with floating-point values, CNN in-
ference calculations can often be reduced to inte-
ger computation with as few as 8-bits achieving
reasonable accuracy. Recent DRAM PIM work
has shown that in many cases this can be further
reduced to ternary w ∈ {−1, 0, 1} or even binary
w ∈ {0, 1} computations operations to replace
the multiplications. However, online training for
all but the simplest CNNs still requires full 32-
bit floating-point computations to work properly.
Without this accuracy, the weight updates can be
ineffective and possibly even detrimental.

In the next section we explore embodied
energy calculations of a variety of accelerators
suitable for CNN acceleration.

Evaluation of Edge Acceleration
Sustainability

To consider holistic energy across embodied
and operational phases of potential edge accelera-
tors requires use of the LCA of the semiconductor
fabrication process discussed previously. In the
next section we discuss how to obtain embodied
energy and carbon footprint for different acceler-
ators.

Determining Embodied Energy and Carbon
As process LCA studies, including our modi-

fied process to include spintronics, report embod-
ied energy per wafer, to determine the embodied
energy of the DRAM, RM, FPGA, and GPU we
require the IC die area and technology node. The
die area determines what portion of the wafer is
required for each die, from which the portion of
the embodied energy of the wafer is a result of
that die.

We use reported die areas for DDR3 DRAM,
FPGAs, and GPUs for the selected devices re-
ported in Table 1. For RM we used a modified
version of NVSIM [20] to calculate the die area.
We also are studying a version of RM that is
extended with PIM capabilities to serve as an
accelerator using the processing capabilities of
CORUSCANT [5] and POD-RACING [6]. Thus,
we calculated the additional die area of the PIM
peripheral circuitry [5]. Thus, the RM-based ac-
celerator has both an increased embodied energy
per die area due to the exotic memory process as
well as a larger die area than traditional RM due
to the additional logic required for PIM.

There are CMOS process LCAs reported in
the literature for 350 nm–32 nm [9] processes
and for 28 nm–3 nm [8]. There are also DRAM
process LCAs down to 55 nm [9] that were
in service to produce DDR3 parts. There is a
significant gap between the two studies as noted
by the gap between the reported 32 nm [9] and
28 nm [8], such that a third study that reports
32 nm [21] sits between the two. Thus, in our
work we do not compare nodes that cross the
studies.

Because we report RM at 32 nm, for which
there are three process LCA studies, we estimated
the total cost based on the CMOS estimates from
each of the three studies and make comparisons
to devices that can be estimated using the same
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Table 1. Accelerator statistics, embodied energy, and
embodied carbon emissions for grid mixes from Table 2.

RM DDR3 RM RM FPGA GPU

Tech Node 321,4 551 322,4 323,4 73 143

Die Size (mm2) 38 73 38 38 324 350
Die per wafer 1847 967 1847 1847 217 201
PE (kWh/Wafer) 1600 1200 1206 753 1482 882

Energy (MJ/die) 3.12 4.475 2.35 1.47 24.59 15.80

AZ (gCO2eq/die) 343 4905 259 162 2698 1734
CA (gCO2eq/die) 203 2915 153 95 1598 1027
TX (gCO2eq/die) 380 5445 286 179 2992 1922
NY (gCO2eq/die) 163 2335 123 77 1284 825
1 Calculated using process LCA from [9].
2 Calculated using process LCA from [21].
3 Calculated using process LCA from [8].
4 Requires extra steps for spintronics [19].
5 Requires 16 dies to build a the tested 1GB DIMM.

Table 2. Energy to gCO2eq/kWh [22] and Grid Mixes [23]

Source gCO2eq/kWh AZ CA TX NY
Coal 980 20% 3% 19% –
Natural Gas 465 40% 39% 53% 37%
Geothermal 27 – 5% – –
Hydroelectric 24 5% 18% – 22%
Solar PV 65 7% 20% 2% 2%
Wind 11 – 7% 17% 4%
Nuclear 27 28% 7% 9% 33%
Biopower 54 – 3% – –
Mix (gCO2eq/kWh) 395 234 438 188

process LCA study. We discuss this in more detail
in the supplementary material.

System Embodied Energy and Carbon Study
Several grid mix scenarios for CO2eq based

on CO2eq per generation method [22] and re-
ported grid mix per state [23] for states that
have significant semiconductor manufacturing ac-
tivities are presented in Table 2. These states,
Arizona, California, Texas, and New York, all
have very different grid mixes.

Arizona and Texas have significant electrical
generation from coal and the highest generation
from natural gas. While Arizona has signifi-
cant generation from nuclear plants and Texas
has significant wind energy, their 395 and 438
gCO2eq/kWh (CO2 equivalent generated per
kWh) are much higher than California and New
York, which still get more than a third of their
electricity from natural gas. California is very
balanced on renewable energy and New York has
significant hydroelectric and nuclear power gener-
ation, thus their grid mix generates about half the
GWG emissions at 234 and 188gCO2eq/kWh,
respectively.

In Table 1 we report the embodied energy

Table 3. Performance, Operational Power, and Efficiency
per Power and Carbon of Different Edge Accelerators

Inference Acceleration using Ternary Model Reduction and PIM
Benchmark Target Performance Power Efficiency

Lat.(S) FPS W FPS/W MF/gCO2eq
Alexnet GPU 0.0014 705.9 9.54 74 0.61–1.42

DDR3 [17] 0.0118 84.8 2 42.4 0.35–0.81
Ternary [17] RM 0.0020 490 0.93 526 4.6–10.8

Training Acceleration using Floating-Point 32 Data
Benchmark Target Performance Power Efficiency

Lat.(S) GFLOPS W GFLOPS/W TFLOPS/gCO2eq

Alexnet
GPU 0.005 1335 21.05 63.4 521–1214
RM 0.128 50.72 5.65 8.97 74–172

FPGA 0.13 49.97 16.78 2.98 25–57

VGG-16
GPU 0.11 848 20.37 41.6 342–797
RM 1.12 81.95 5.7 14.37 118–275

FPGA 1.03 89.48 18.02 4.97 41–95
Idle Power (W) FPGA = 9.6 GPU = 3.0 DDR3 = 1.2 RM = 0.8

and embodied carbon using the grid mixes from
Table 2 for different accelerators. We targeted
DDR3-1600 for DRAM as this is the device
that has been used to implement DRAM PIM
using ELP2IM [17] and subsequently used to
implement a ternary model reduction of CNN
inference.

For dedicated accelerators we selected edge
server appropriate low-energy devices includ-
ing the Versal Prime FPGA (VM1802) from
AMD/Xilinx and the NVIDIA Jetson NX mobile
GPU. Note, we were somewhat limited in our
choice of, particularly FPGA, devices as die area
is necessary to estimate embodied energy/carbon
and not typically reported.

The RM is extremely dense, even with the
additional PIM logic [5], it has a low embodied
energy even compared to the DRAM. The GPU
and FPGA require an order of magnitude more
embodied energy due to their much larger die
sizes.

Holistic Sustainability Evaluation
To determine the overall energy (and carbon

footprint) of these acceleration choices we com-
pared a CNN conducting inference using hand de-
signed ternary approximations targeting DRAM
PIM [17] and RM PIM [5] against the GPU using
8-bit integer precision from a PyTorch-based flow.
Between the PIM solutions, RM provides both an
embodied and operational energy improvement,
ultimately providing order-of-magnitude benefits
in mega frames per gCO2eq.

RM is also competitive with the GPU, with
the GPU having an approximately 30% la-
tency and throughput advantage. However RM
is clearly more sustainable having an order-of-
magnitude improvement in both embodied and
operational energy.
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(a) AlexNet inference DDR3→RM
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(b) AlexNet inference GPU→RM
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(c) AlexNet training GPU vs. RM
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(d) VGG-16 training GPU vs. RM
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(e) AlexNet training GPU
fabricated in AZ deployed in NY
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(f) AlexNet training GPU
fabricated in CA deployed in TX

Figure 2. Sustainability analyses of different accelerator choices for edge systems.

Breakeven Inference Analysis

We conducted two studies, presuming the
edge system already contains DDR3 with PIM
capabilities or a GPU. We illustrate this using
the GreenChip tool [10] in Figure 2a. The chart
shows the comparisons between the two systems
in terms of activity ratio on the y-axis versus
sleep ratio on the x-axis. The sleep ratio is the
ratio of active to sleep time. The activity ratio is,
of the active time, the ratio of compute to idle
time [10]. More details on how the GreenChip
tool represents breakeven and indifference scenar-
ios is included in the supplementary document.

In the comparison of adding RM to a server
using DDR3 as a PIM accelerator (Figure 2a),
if the system is heavily loaded (bottom left) it
can take on the order of a month before the
RM upgrade saves overall energy. As the system
becomes more idle (towards top left) or sleeping
(towards bottom right) or both (towards top right),
it can take months to recover the embodied cost.
However, unless the machine is sleeping more
than 75–80% of the time, the upgrade will be

recovered in less than one year. The time for
RM to overtake the GPU is faster, with a busy
server requiring days and lightly loaded server
requiring months. This is because the embodied
cost is lower in the DTCO estimation and the RM
has a substantial advantage over the GPU in both
dynamic and static power.

Indifference Online Training Analysis
To explore CNN training we compare the

GPU and FPGA implementations using a
PyTorch-based flow with hand optimization of
AlexNet and VGG-16 [1] as well as hand mapped
designs for the RM accelerator [6]. From Tables 1
and 3, both embodied and operational energy for
the FPGA are higher than both the RM and the
GPU, so the indifference calculation will never
pick the FPGA. The FPGA does have a lower
power than the GPU, so its best use case is if the
system has a hard power upper limit.

A notable sustainability comparison is that for
training the RM has a lower embodied energy
and a higher operational energy than the GPU.
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The indifference results are shown in Figures 2c
and 2d for AlexNet and VGG-16, respectively.
Both applications can benefit from the GPU in
high usage scenarios (bottom left), but if the
system does training infrequently, the GPU sav-
ings during training cannot overcome the higher
embodied energy. For an under loaded server, it
becomes impossible for the GPU to benefit due
to its higher static power. The activity ratio cutoff
for Alexnet is around 50% and VGG-16 cuts off
in the 40% range.

When considering the energy grid mix in
the calculation this can deflect the indifference
calculation substantially. In Figure 2e for on-
line training of AlexNet, we explore the case
where fabrication takes place in AZ which has
a comparatively high CO2eq/kWh and the sys-
tem is deployed in NY with a relatively low
CO2eq/kWh. Even in the highest utilization
case the indifference point becomes six months,
and in lower utilization (circa 70%) it becomes 1
year, and quickly grows to multiple years as the
utilization drops towards 50%, favoring the RM
for relatively more usage scenarios.

In Figure 2f, a lower embodied carbon grid
mix and higher operational carbon grid mix is
explored for the same application. As expected
the indifference times are much shorter favor-
ing the GPU in more scenarios. Considering a
deployment lifetime of circa 2 years, the AZ,
NY scenario requires more than 60% training
computation for the GPU to be worthwhile while
in the CA, TX comparison this drops to 50% if
the server remains active, but could drop to less
than 20% if the server can sleep while not in use.

CONCLUSION
In this work, we compared several SWaP opti-

mized CNN accelerators popular for edge servers
for both inference and on-line training metrics.

The breakeven point analysis suggests replac-
ing DRAM PIM with RM PIM results in a benefit
in total energy within the 0 ≤ t ≤ 1 years
for most usage scenarios. The replacement time
is likely on the low end of that time-frame if
the server is heavily used for this task, which is
reasonably popular given the rising popularity of
CNN acceleration on edge servers. The breakeven
time is even more striking for a system using
a Jetson Xavier NX mobile GPU, suggesting

replacement with RM always yields a savings
within just a few months.

In our indifference comparison between RM
and the GPU the edge server activity ratio needs
to be at least 50% for lightweight CNN training
algorithms like Alexnet and higher for VGG-16 to
make a GPU lower overall energy than RM. Be-
cause of the higher static power, lower utilization
will always favor RM due to its lower embodied
and static energy costs. To understand the carbon
relationship we can see that the grid mix from
manufacturing and use have a significant impact.

It is clear that embodied effects can remain
high compared to operational effects. Even an
energy efficient GPU can be inefficient compared
to reduced precision models for inference if the
accuracy is sufficient. While one takeaway is that
RM is an interesting compromise between effi-
cient inference calculation and infrequent online
training compared to the GPU, the more salient
point is that a system can achieve better sustain-
ability even if it is not the most operationally
energy efficient.

The somewhat non-intuitive takeaway is that
systems that dramatically reduce embodied en-
ergy in general, and static power particularly
for underloaded servers, have a place for more
sustainable edge computing. This is possible even
if the accelerator has higher latency and opera-
tional energy than other accelerators. Designing
accelerators for holistic sustainability remains an
important challenge. Emerging architectures such
as tensor processors should be studied. Emerging
technologies such as analog crossbars should also
be evaluated, in spite of their increases in em-
bodied energy per area. We plan to explore these
approaches in more detail in our future work.
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