
EF-Train: Enable Eficient On-device CNN Training on FPGA

Through Data Reshaping for Online Adaptation or Personalization

YUE TANG, University of Pittsburgh, USA

XINYI ZHANG, University of Pittsburgh, USA

PEIPEI ZHOU, University of Pittsburgh, USA

JINGTONG HU, University of Pittsburgh, USA

Conventionally, DNN models are trained once in the cloud and deployed in edge devices such as cars, robots, or unmanned
aerial vehicles (UAVs) for real-time inference. However, there are many cases that require the models to adapt to new
environments, domains, or new users. In order to realize such domain adaption or personalization, the models on devices
need to be continuously trained on the device. In this work, we design EF-Train, an eicient DNN training accelerator
with a uniied channel-level parallelism-based convolution kernel that can achieve end-to-end training on resource-limited
low-power edge-level FPGAs. It is challenging to implement on-device training on resource-limited FPGAs due to the low
eiciency caused by diferent memory access patterns among forward, backward propagation, and weight update. Therefore,
we developed a data reshaping approach with intra-tile continuous memory allocation and weight reuse. An analytical model
is established to automatically schedule computation and memory resources to achieve high energy eiciency on edge FPGAs.
The experimental results show that our design achieves 46.99 GFLOPS and 6.09 GFLOPS/W in terms of throughput and energy
eiciency, respectively.

CCS Concepts: · Hardware→ Integrated circuits; Reconigurable logic and FPGAs; Hardware accelerators.

Additional Key Words and Phrases: on-device training, edge FPGAs, data reshaping

1 INTRODUCTION

Deep Neural Networks (DNNs) have been widely used in edge devices such as cars, robotics [5], and unmanned
aerial vehicles (UAVs) [37], to accomplish various tasks, including autonomous driving, object detection, etc.
FPGAs are promising platforms with higher computational density, communication bandwidth, and energy
eiciency, and can be conigured based on diferent tasks. Nowadays, FPGAs have been widely used in various
edge device domains. For example, edge-scale FPGAs are commonly utilized in object detection tasks with high
frames per second and low power consumption [8]. The Corazon-AI built on Xilinx Zynq is a perfect it for various
computer-vision-based applications including video surveillance, advanced driver-assistance systems (ADAS),
medical robotics, industrial automation, and augmented reality [32]. Combined with reconigurability, FPGAs have
been adopted in several autonomous platforms such as pony.ai [33] and ZF ProAI [34]. In medical applications,

This work is supported by NSF CNS-2122320 Towards Unsupervised Learning on Resource Constrained Edge Devices with Novel Statistical
Contrastive Learning Scheme.

Authors’ addresses: Yue Tang, University of Pittsburgh, Pittsburgh, USA, yut51@pitt.edu; Xinyi Zhang, University of Pittsburgh, Pittsburgh,
USA, xinyizhang@pitt.edu; Peipei Zhou, University of Pittsburgh, Pittsburgh, USA, peipei.zhou@pitt.edu; Jingtong Hu, University of
Pittsburgh, Pittsburgh, USA, jthu@pitt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
1084-4309/2022/2-ART $15.00

ACM Trans. Des. Autom. Electron. Syst.

2 • Tang and Hu, et al.

an FPGA-based low-latency multi-layer perception (MLP) processor for real-time cancer detection has been
developed, since FPGA-based design can directly interfacewith sensors, display devices, and reduce datamovement
delays [25]. Burger et al. applied an FPGA-based embedded device to monitor usersâĂŹ electrocardiograms
(ECGs) in a pervasive internet-of-things (IoT) system [1]. FPGAs have also been well performed in other areas
such as agricultural robots [14], UAVs [40], etc. In traditional FPGA-based edge device applications, DNNs are
pre-trained in the cloud before being deployed in FPGAs, which is not eicient for domain adaption. When the
environments, tasks, or users change, data needs to be collected from the edge FPGAs and transmitted to the
cloud. Then, the cloud retrains a new model, transmitting the model back to the edge devices. The whole process
is ineicient and time-consuming. Therefore, it is often desirable for edge FPGAs to continuously and locally learn
from new data. Such on-device learning can directly improve model accuracy and adapt to new environments.
Currently, several algorithms have been proposed to enable edge devices to achieve domain adaption locally. For
example, a MobileDA framework [36] has been developed to allow a novel teacher network trained in the server
to distill the knowledge for a student network running in the edge device, and the algorithm was employed on an
embedded GPU and NVIDIA Jetson TX2. A transductive transfer learning model HDCNN [13] has been proposed
to allow adaptation without requiring collecting large volumes of labeled training data in the target domain, and
the algorithm was tested on 1080 Ti GPU. To implement these complex and fantastic software-level algorithms on
FPGA-based edge devices, an FPGA-based training accelerator is indispensable. However, traditional FPGA-based
edge device applications lack such hardware-level designs for training operations, which prevents FPGA-based
devices from applying these algorithms directly.
Furthermore, directly training Convolutional Neural Network (CNN) models on local FPGAs can facilitate

personalization. For example, in some medical applications such as home monitoring [19], long-term ECG
monitoring [24], etc., the distinction of diferent users’ physical conditions will impact data distribution, so
models need to be ine-tuned based on speciic users. The system in [1] utilized cloud services to log a userâĂŹs
condition over time and continuously improve the systemâĂŹs performance. It would be more efective if models
could be directly updated on the FPGA device. Besides, learning at the edge can provide better privacy since
users do not need to upload data into the central cloud [35].

However, it has been challenging to implement on-device training on FPGAs. Previous works mainly focused
on implementing CNN inference on FPGAs. For example, Zhang et al. [38] exploited various optimization
techniques including loop unrolling, loop tiling, and loop transformation on the FPGA accelerator, and proposed
a rooline model to quantitatively analyze its computing throughput and required memory bandwidth. Various
designs [31, 41] have been proposed to map well-trained neural networks on FPGAs for inference with high
throughput and low latency. Compared with CNN inference, it is more complex to eiciently implement CNN
training on FPGAs in terms of the following aspects. First, the inference process only includes forward propagation
(FP), whereas the training process includes FP, backward propagation (BP), and weight update (WU), which leads
to a 3X computation operation count with more types of operations [3]. Second, the large volume of activation
data in FP needs to be used in BP and WU, and the loss data generated in BP is also required in WU. Such data
dependency across multiple layers makes it diicult for on-board memory management and data reusing in
dynamic random access memory (DRAM) in an end-to-end training system [27]. Third, since FP, BP, and WU
have diferent memory access patterns, simply using the memory optimizations of FP in the whole training
process leads to low memory access eiciency in BP and WU. Because of the above-mentioned challenges, CNN
training on FPGAs has not been comprehensively investigated.
Recently, several FPGA-based architectures have been designed to accelerate training on large scale FPGAs.

F-CNN [42] irst performed FP and BP on a Maxeler MPC-X datalow FPGA node but WU on CPU. Designs such
as [18, 28] aimed to further reduce the CNN training latency and improve throughput. However, these works
mainly focused on cloud-level devices with abundant resources. A straightforward training implementation on
edge FPGAs is still challenging.

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 3

To tackle the challenges in implementing on-device training on edge-level FPGAs, we propose EF-Train, a new
eicient FPGA-based training accelerator with a uniied channel-level parallelism-based convolution kernel to
handle the computation complexity. The uniied kernel means that it processes convolution operations of FP, BP,
and WU in the training phase utilizing the same computation resources on the FPGA chip. The channel-level
parallelism means that the kernel allocates these computation resources to process multiple channels of feature
maps in parallel. We also propose a data reshaping approach to solve the communication bottleneck in realistic
end-to-end training processes. The overview of the design framework is shown in Fig. 1. The data reshaping
approach is a compile-time optimization that achieves intra-tile and inter-tile memory access continuity and
weight reuse in mini-batch training. The proposed design can be implemented on resource-limited FPGAs without
sacriicing precision. Neural networks can be trained on both small batches and large batches. Since training
and inference are conducted separately in realistic applications, and FPGAs are conigurable to implement
diferent designs on the same hardware platform for diferent applications, our design can be applied to those
well-developed FPGA-based inference devices. In a relatively long life cycle of the inference phase, the original
design can guarantee high throughput and low latency. If users or the environments change, the device can be
switched to implement our design immediately to learn from local data for online adaptation or personalization
rather than transmitting data to the cloud centers and waiting for the cloud centers to transmit the well-trained
model back to the device. Our main contributions are as follows.

• We propose EF-Train, an eicient FPGA-based CNN training accelerator with a uniied convolution kernel
to process FP, BP, and WU with full precision. The accelerator exploits channel-level parallelism to achieve
high computation utilization for both small and large batch sizes. Our accelerator supports end-to-end CNN
training with convolutional (Conv) layers, fully connected (FC) layers, batch normalization (BN) layers,
rectiied linear unit (ReLU) layers, and pooling layers (Section 3).
• We propose a data reshaping approach to solve the of-chip communication bottleneck. The features
and weights are stored in of-chip memory with intra-tile continuous memory allocation to remove
discontinuous memory accesses within a tile. We also reduce inter-tile discontinuous memory accesses
by scheduling loop orders between tiles. We further exploit weight reuse among multiple images in a
mini-batch to improve communication eiciency when the batch size is larger than one (Section 4).
• We build a performance and resource model for the proposed accelerator. Based on the model, a computation
and memory resources scheduling tool is established to determine design parameters for diferent FPGA
devices and diferent neural networks (Section 5).
• We deploy the training process on PYNQ-Z1 and ZCU102 for various CNNs on both Cifar-10 and ImageNet
datasets. Experimental results show that our design can achieve 46.99 GFLOPS and 6.09 GFLOPS/W in
terms of throughput and energy eiciency, respectively (Section 6).

2 BACKGROUND AND MOTIVATIONS

2.1 CNN Training

The training process of a ive-layer CNN is shown in Fig. 2, including the FP process (red arrows), the BP process
(black arrows), and the WU process (yellow arrows). The network includes two Conv layers, one FC layer, one
BN layer, one ReLU layer, and one pooling layer which are practical and can make up most neural networks in
real-world scenarios.

In the FP process, activation is propagated layer by layer. In a Conv layer such as layer 1, the input activation
A1 conducts multiply-accumulate (MAC) operations with the weightsW1. A BN layer is always followed by a
Conv layer. In layer 2, the inputs of the BN layer include the input activation A2 and learnable parameters γ2 and
β2. The immediate outputs include λ2, Â2, and output activation A3. A3 then goes through the ReLU and pooling
layers. Finally, the FC layer provides classiication results for the input image.

ACM Trans. Des. Autom. Electron. Syst.

4 • Tang and Hu, et al.

Challenges for On-device Training on Edge-level FPGAs

Computation Complexity:
• Involves FP, BP, and WU with more

types of operations.

Communication Bottleneck:
• On-board memory management

difficulties.
• Low memory access efficiency in FP,

BP, and WU

Section 3
Section 4 Data Reshaping Approach

Section 5

Performance and Resource Model

Computation and Memory Resources
Scheduling Tool

Unified Channel-level
Parallelism-based
Convolution Kernel

Fig. 1. Overview of our design framework.

process bn.pdf

layer 1 layer 3 layer 4 layer 5

A1 Conv

W1

A2 Relu A4 Pool A5 Conv

W5

A6

f Label

L6ConvL5

Conv

dW5

PoolL4ReluL2

Conv

dW1

FP

BP

WU

layer 6

FC

W6

FC

FC

dW6

A7

L7

layer 2

BN A3

L3BN

Ȗ2
ȕ2

λ2
Â2

Fig. 2. CNN training process.

In the BP process, the loss will be calculated and propagated back to the irst layer. The loss of the last layer is
calculated by the loss function f . This paper adopts the most commonly used cross-entropy loss function. The
stochastic gradient descent (SGD) is applied in CNN training. In a Conv layer, layer 5 for example, the loss L6
needs to be padded irst to ensure the size of the convolution results L5 is the same as the size of A5. The tensors
for weightsW5 are transposed on dimensions for output channels and input channels. The original kernel tensors
need to be lipped. Then, L5 is calculated by the convolution operation between the transposed weights and L6. In
the maximum pooling layer, layer 4, A4 is compared with A5 to determine which element on L4 should obtain the
value from the corresponding position on L5. If layer 4 is an average pooling layer, the values for each element of
each patch in L5 will be directly accumulated and propagated to L4. In the ReLU layer, layer 3, an element of L3
will return zero if the value in the same position of A3 is less than zero. Otherwise, the value of the corresponding
position in L4 will be propagated back. In the BN layer, layer 2, γ2 and β2 are updated according to the value of
λ2, Â2, and L3. Then the loss is propagated back to L2.

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 5

The gradients of weights in layer i is calculated after the loss of layer i + 1 is propagated. In layer 5, dW5 is
calculated by conducting MAC operations for A5 and L6. The gradients are accumulated inside a batch. In a
mini-batch, after the above-mentioned operations are conducted for all images,W5 will be updated by subtracting
dW5 × learninд rate .

2.2 Related Works

DRAMAccess Issues for Current FPGA-based Inference Accelerators: Currently, FPGAs have been widely
adopted in edge domains thanks to the well-developed FPGA-based inference accelerators [38, 41]. Among the
inference accelerators, many works [10, 12, 38] mainly focused on selecting optimal design parameters to improve
the acceleration performance for individual Conv layers. Optimizing techniques such as loop tiling, loop unrolling
are adopted by these works. Although the proposed algorithms achieved higher performance eiciency on a
given Conv layer, the proposed designs only presented isolated accelerators without completing end-to-end
inference where all layers of a neural network are tested continuously. In an end-to-end system, the layers’
intermediate results are usually transferred between on-chip bufer and of-chip DRAM due to the limited on-chip
storage size, so the impact of of-chip memory accesses should be considered in realistic scenarios. For most
edge-level FPGAs, direct memory access (DMA) is a commonly used efective data swapping way for continuous
address data reading. However, in current FPGA-based DNN deployments, when the on-chip memory cannot
hold all the features and weights of a Conv layer, data need to be fetched and processed in tiles based on the
computation pattern. Such tiling schemes break the continuity of data addresses in DRAM and thus reduce the
DMA transmission eiciency. The detailed analysis will be further discussed in Section 4. This discontinuity can
degrade the DMA transferring speed from about 8GB/s to around 1GB/s [6]. The optimal algorithms proposed in
the above-mentioned accelerators are based on the assumption that data are well pre-allocated between adjacent
layers so tiles can be loaded from and stored back to the DRAM continuously. However, in actual end-to-end
systems, such allocation overhead is extremely large compared to the acceleration time.
Solutions for The DRAM Access Issues in The Inference Phase: Issues related to DRAM memory access
have been addressed in recent works. For example, ROMANet [23] proposed a design space exploration (DSE)
by searching for the appropriate data partitioning and scheduling for each layer of a network to reduce the
number of memory accesses. DRMap [22] proposed a generic DRAM mapping policy and a DSE to reduce the
DRAM access latency and energy. These two works were implemented on Tensor Processing Units (TPUs). [11]
deined a multi-bank on-chip memory management (MOMM) problem to minimize the DRAM access overhead
in the processing of CNNs on a neural processing unit (NPU) with a multi-bank on-chip memory. However, since
FPGAs have diferent hardware architecture with TPUs or NPUs, their optimizing algorithms cannot be directly
applied to FPGA-based designs. For example, in the TPU-based designs [22, 23], the architecture of the on-chip
accelerator is already ixed, with ixed MAC arrays and ixed on-chip bufers for input features, output features,
and weights, respectively. In FPGA-based designs, only the total number of DSPs and on-chip memory sizes are
given, and the allocation and connection of MAC arrays and individual bufers are conigured by the designer.
Therefore, optimizations on FPGA-based designs should not only reduce DRAM access latency or frequency
based on the of-chip DRAM access policy but also be comparable to support the on-chip acceleration designs.
A few FPGA-based works reorganized the DRAM layout to relieve the memory access discontinuity and

validated the approaches on realistic end-to-end tests. For example, [6] compared three diferent layout schemes
of input features in the inference phase and inally found that the channel-major scheme where the input features
are fetched and stored along the input channel direction irst could improve access continuity and reduce data
duplication. Cafeine [39] combined both on-chip and of-chip data reorganizations for the convolutional matrix-
multiplication representation to maximize the underlying memory bandwidth utilization. FlexCNNe [26] further
optimized data layout optimizations on the concatenation layers.

ACM Trans. Des. Autom. Electron. Syst.

6 • Tang and Hu, et al.

However, all these works [6]-[26] are based on the computation and memory access pattern in the inference
phase which only has FP. The training phase involves FP, BP, and WU where their data access pattern for output
features, input features, and weights are diferent. Therefore, the above-mentioned approaches cannot be directly
applied in CNN training, and a new optimized design considering FP, BP, and WU together is required.
FPGA-based Training Accelerators: As mentioned in Section 1, CNN training on FPGAs has not been com-
prehensively investigated. The training process is much more complicated than the inference process, so it is
sub-optimal to directly adopt the frameworks of inference accelerators for training.

Due to the computation complexity and communication bottleneck, currently, only a few works aim to achieve
eicient FPGA-based training. With FPGA clusters, FPDeep explored layer-level parallelism for training a CNN
model in a ine-grained pipeline [30], which has superior scalability to a large number of FPGAs. However,
such larger clusters are not suitable to be adopted on edge-level applications. For training on a single FPGA, an
automatic compiler for training accelerator on Stratix 10 was developed in the precision of 16-bit ixed-point [28].
DarkFPGA adopted batch-level parallelism using 8-bit integers for training a VGG-like network on the Maxeler
MAX5 platform [18]. It achieved high throughput when the batch size is large. A sparse CNN training accelerator
was designed on VCU1525. The accelerator was implemented on a pre-trained CNN model with 85% parameters
pruned [20]. However, these existing works mainly focused on cloud-level devices with abundant computation
and memory resources.

Besides, even with cloud-level resources, reduced precision and pruning approaches have also been utilized to
decrease computation intensity and communication bottleneck. Although quantization adopted in prior training
accelerators [4, 18] led to remarkable beneits in terms of resource usage and power consumption, these works
have not provided any evidence that such quantization techniques can remain high accuracy on a large dataset
(e.g. ImageNet) with dense neural networks. Currently, training with full precision is still preferred in most
realistic applications, and its high computation and memory overhead should be faced directly. However, none of
the above-mentioned state-of-art training accelerators targeted resource-limited edge FPGAs with full precision,
which is more challenging to implement end-to-end CNN training but is more practical in real-world scenarios.
Therefore, an optimized design is necessary to implement on-device training on resource-limited FPGAs without
sacriicing precision.
Implementation of BN layers: Apart from the computation-intensive Conv layer, the BN layer is also a key
component and is essential for the training process. In inference, a BN layer can be folded into the adjacent
CONV layer, since it just performs a simple linear transformation [17]. However, the batch normalization process
in the training phase is much more complex. It needs to calculate the expected value and variance of the data in
the whole mini-batch, which involves lots of on-chip and of-chip data transmission. Lu et al. [17] optimized the
computation low of BN layers during FP and BP, and implement BN layers in their CNN training accelerator.
Unlike [17] which adopts the 8-bit ixed-point in Conv layers and FP16 in BN layers, our work supports BN layers
with full precision, which brings more challenges for computation and transmission requirements.

2.3 Motivations of The Proposed Design

To implement on-device training on resource-limited FPGAs, we need to solve the computation complexity and
communication bottleneck illustrated in Fig. 1.
In the training phase, the FP, BP, and WU processes are conducted iteratively and need to be completed on

the same accelerator. Edge FPGAs have limited computational resources. Using separate kernels for FP, BP, and
WU leads to resource underutilization and low energy eiciency. Therefore, to eiciently process the complex
computation for FP, BP, and WU, we need to design a training accelerator that can handle the three processes
in a uniied convolution kernel and can achieve a high parallelism degree considering the lexibility of DNN
architectures. For a Conv layer, there are three levels of parallelism that are adopted in FPGA-based accelerators:

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 7

batch-level parallelism, feature-map-level parallelism, and channel-level parallelism. Fig. 3 (a) illustrates the
process of batch-level parallelism, whereTb nominates the number of output feature maps (OFMs) of images in a
mini-batch that are processed in parallel. Fig. 3 (b) shows the process of feature-map-level parallelism, where
T f ×T f features of OFMs are processed in parallel. Fig. 3 (c) shows the process of channel-level parallelism,
whereTm nominates the number of output channels of OFMs that are processed in parallel, andTn nominates the
number of input channels of input feature maps (IFMs) that are processed in parallel. The degree of parallelism
depends on the amounts of utilized computation units on the hardware. Table 1 shows the comparisons of the
three levels of parallelism. Considering a Conv layer with B images in a mini-batch, it is assumed that the number
of input channels is N , the number of output channels isM , the size of an OFM is R ×C , and the size of a weights
kernel isK×K .Tmops = B×M×N ×R×C×K×K multiply operations are required to process such a layer. For the
batch-level parallelism, it takes ⌈ B

Tb
⌉×M×N ×R×C×K×K cycles to complete the Conv layer. Such parallelism can

achieve high throughput when the batch size is large, and the size of the feature map and the number of channels
have little impact on the performance. For example, in previous works, DarkFPGA [18] built its accelerator with
batch-level parallelism and achieved high throughput when the batch size is 128. However, when the batch size is
small or even 1 (online learning), most computation units will remain idle. For example, when B < Tb, completing
the Conv layer costs Tmops cycles, and Tb−B

Tb
of computation resources remain idle. It leads to a low parallelism

degree and such under-utilization of resources makes the performance sub-optimal. For the feature-map-level
parallelism which has been adopted by works like [28], it takes B ×M ×N × ⌈ R

T f
⌉ × ⌈ C

T f
⌉ ×K ×K cycles to inish

a Conv layer. The batch size and the number of channels have little impact on such parallelism. The parallelism
will beneit from layers with large feature map size but has under-utilization for layers with small feature map

size. For example, when R < T f and C < T f , completing the Conv layer costs Tmops cycles, and T f −R

T f
×

T f −C

T f

of computation resources will remain idle. However, in CNN training, the size of a feature map may vary from
large size (like 224 × 224 for the input image of the ImageNet) to 1 × 1 for the FC layer. The feature-map-level
parallelism will be ineicient to process the layers with a small feature map. For channel-level parallelism, it takes
B × ⌈ M

Tm
⌉ × ⌈ N

Tn
⌉ × R ×C ×K ×K cycles to complete the Conv layer. It acquires a high parallelism degree with a

large channel number, and the batch size and feature map size have little impact on it. When the channel number
is small, for example, when N < Tn, completing the Conv layer costs B × ⌈ M

Tm
⌉ × N × R ×C × K × K cycles, and

Tn−N
Tn

of computation resources will remain idle. However, for most neural networks, only the irst layer has a
small input channel number (N = 3). For other layers, the channel size (for example 32, 64, etc.) is usually larger
than the maximum degree of parallelism that an edge FPGA can achieve. Therefore, channel-level parallelism is
widely adopted by FPGA-based inference accelerators [10, 38]. Generally speaking, the channel-level parallelism
can achieve a constantly high degree of parallelism across multiple layers, so it is adopted in the proposed design
as shown in Fig. 1. The proposed accelerator with a channel-level parallelism-based convolution kernel to process
FP, BP, and WU will be introduced in detail in Section 3.

(a)
OFM of Image 1 OFM of Image Tb

Tb

...

Tf

(b) (c)

Tn

OFM of An Image IFM of An Image

Tm

OFM of An Image

Fig. 3. Three levels of parallelism. (a) Batch-level parallelism, (b) Feature-map-level parallelism, (c) Channel-level parallelism.

ACM Trans. Des. Autom. Electron. Syst.

8 • Tang and Hu, et al.

Table 1. Comparisons of the three levels of parallelism

Parallelism Batch-level
Parallelism

Feature-map-level
Parallelism

Channel-level
Parallelism

Large Batch Size advantaged little impact little impact
Small Batch Size disadvantaged little impact little impact

Large Feature Map Size little impact advantaged little impact
Small Feature Map Size little impact disadvantaged little impact
Large Channel Number little impact little impact advantaged
Small Channel Number little impact little impact disadvantaged

Furthermore, the communication bottleneck is also challenging for edge-level FPGAs in end-to-end training. As
illustrated in Fig. 2, the activation data in FP needs to be used in BP and WU, and the loss data generated in BP is
also required in WU. The length and heterogeneity of the data dependency paths in diferent layers make external
memory accesses inevitable [27]. Previous training accelerators attempted to avoid external memory accesses. For
example, FPDeep [30] scaled CNN computations to larger clusters so that only on-chip memory is needed for the
CONV layers. However, such larger clusters cannot be used on edge devices. [16] implemented LeNet-10 on an
FPGA and stored the inputs and outputs of one layer on the chip. Such design can only support small networks,
but for many larger networks (e.g. Vgg-16, AlexNet, etc.), the on-chip memory of an edge FPGA is not big enough
to hold weights or features in every Conv layer. Therefore, several works [4, 18, 20] applied quantization or
pruning to reduce of-chip memory access. However, unlike inference where compressed networks cause little
accuracy decrease [7], these training works have not proved that their compression techniques can remain
high accuracy on large datasets with dense networks. To guarantee accuracy, it is necessary to implement CNN
training with full precision. Our goal is to design a general accelerator supporting end-to-end training with
both dense and small networks without sacriicing precision, so it is necessary to appropriately manage external
memory access and allocate on-chip bufers. As mentioned in Section 2.2, the tiling schemes involved in on-chip
accelerator design break the continuity of data addresses in DRAM and thus reduce the DMA transmission
eiciency. Therefore, it is necessary to improve the address continuity of data to improve the eiciency of data
swapping considering the complex data patterns in FP, BP, and WU altogether. To solve this communication
issue, as shown in Fig. 1, a data reshaping approach is proposed and will be introduced in detail in Section 4.

3 FPGA-BASED CNN TRAINING ACCELERATOR

In this section, we propose an FPGA-based accelerator exploiting channel-level parallelism to deal with the
training process. A uniied convolution kernel is designed to process FP, BP, and WU with full precision.

3.1 The Architecture of The Training Accelerator

The proposed training accelerator is shown in Fig. 4. We implement our accelerator on an end-to-end training
system. At irst, the CPU transmits labels, initial weights, the activation data of the irst layer, layer parameters,
initial parameters for BN layers, and the DMA start addresses for each layer to the of-chip DRAM. The layer
parameters include computation type (e.g. Conv, ReLU, BN, or pooling) and the shape information. The DMA start
addresses are calculated of-line according to the of-chip memory layout based on our data reshaping approach
mentioned in Section 4. Our accelerator executes computation-intensive kernels based on data dependencies
within a CNN model, while the entropy loss function is computed on the of-chip ARM core.

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 9

Weights

Off-chip Memory (DRAM)

Activation data Loss dataLabels Indexes

IFM
DMA

WEI
DMA

OFM
DMA

OUT
DMA

IFM
buffer

Weight
buffer

Pooling
Indexes

OFM
buffer

Pooling
Kernel

 Conv
 Kernel

PEPE PE

PE PE PE

PE PE PE

On-Chip Memory and Data Flow Tn IFM

Weights

Tm×Tn

Tn IFM

OFM

Tm

Weights Tm×Tn

ĸ
Tm OFM

ķ

Labels, Initial weights, Activation data of the first layer, Initial

BN parameters, Layer parameters, DMA start addresses CPU

BN
Kernel

BN
Parameters

Parameters
for BN

Fig. 4. Accelerator architecture.

As illustrated in Fig. 4, the of-chip memory (DRAM) stores data for activation, loss, weights, labels, indexes
for pooling, and parameters for BN. Data are transmitted through the DMA AXI-stream bus to on-chip memory
for computation. There are 4 DMA stream channels: IFM DMA, OFM DMA, WEI DMA, and OUT DMA. These
4 channels are independent and can work in parallel. On the FPGA chip, a uniied Conv kernel is designed to
process FP, BP, and WU with the same computation resources, i.e. the digital signal processors (DSPs). The Conv
kernel is composed of multiple processing elements (PEs) to implement MAC operations. The adder tree structure
is adopted for the proposed kernel since it is lexible to support diferent computation patterns for FP, BP, and WU.
The connection of each multiplier and adder for FP and BP is shown in 1⃝ of Fig. 4, while the connection of each
multiplier and adder for WU is shown in 2⃝ of Fig. 4. The Pooling Kernel focuses on the pooling operation. The
BN Kernel achieves batch normalization and updates BN parameters during FP and BP. ReLU is always followed
by a Conv or BN layer. The accelerator compares the output features with 0 when storing output features back to
the DRAM in Conv or BN layers, so ReLU does not need a unique functional unit. Five types of on-chip block
RAMs (BRAMs) are used to bufer IFMs, weights or weights gradients, OFMs, pooling indexes, and BN parameters.
We adopt double-bufer designs so that data transmission and computation can be conducted in parallel.

3.2 The Forward and Backward Propagation of A Convolutional Layer

Our accelerator adopts channel-level parallelism, loop unrolling, and loop tiling. The symbols are deined in
Table 2. In channel-level parallelism, Tn and Tm are determined by available computation resources (i.e. DSPs)
on the FPGA chip and are ixed for all Conv layers. The degree of parallelism is determined by Tn ×Tm.
Our accelerator achieves SGD in CNN training. The forward and backward propagation processes of a Conv

layer processing the bth image in a mini-batch can be formulated in Eq. (1) and (2), whereW ′
i is the transposed

and lipped tensor ofWi . As illustrated in 1⃝ of Fig. 4, in FP and BP, the Conv Kernel conducts MAC operations for
weights and input features from activation or loss. The IFM bufer stores a tile of activation or loss transmitted
via the IFM DMA channel, and the Weight bufer stores weights transmitted via the WEI DMA channel. The OFM
bufer stores a tiled of MAC outcomes. Computation results are transmitted to the DRAM via the OUT DMA
channel. If a Conv layer is followed by a ReLU layer, for FP, the data in the OFM bufer will be compared with 0
before entering into the OUT DMA channel. For BP, the activation of the previous layer will be transmitted via

ACM Trans. Des. Autom. Electron. Syst.

10 • Tang and Hu, et al.

Table 2. Definitions of Symbols

Notation Description

i ,j Index of a Conv layer
B Batch size
N i Number of the input channels of the ith Conv layer
M i Number of the output channels of the ith Conv layer
Ri Number of the rows of the OFMs for the ith Conv layer
Ci Number of the columns of the OFMs for the ith Conv layer
K i Size of the weights kernel for the ith Conv layer
S i Stride for the ith Conv layer

Ai [b,m, r , c] Activation for the ith Conv layer in FP
Li [b,n, r , c] Loss for the ith Conv layer in BP

Wi [n,m,kr ,kc] Weights for the ith Conv layer
dWi [n,m,kr ,kc] Weights gradients for the ith Conv layer in WU

Tm Number of the output channels in a tile of output features
in each Conv layer

Tn Number of the input channels in a tile of input features in
each Conv layer

Tr i Number of the rows in a tile of output features in the ith Conv layer
Tci Number of the columns in a tile of output features in the ith Conv layer

M i_on Number of the output channels of the weights that stored on-chip in
the ith Conv layer

R j_in Number of the rows of the IFMs for the jth Conv layer
C j_in Number of the columns of the IFMs for the jth Conv layer
Tr j_in Number of the rows in a tile of input features in the jth Conv layer
Tc j_in Number of the columns in a tile of input features in the jth Conv layer

the OFM DMA channel, and the accelerator decides which value should be propagated according to Eq. (3).

Ai+1[b,m, r , c] =
N i
∑

n=1

K i
∑

kr=1

K i
∑

kc=1

Ai [b,n, S
i × r + kr , S i × c + kc] ×Wi [m,n,kr ,kc] (1)

Li [b,n, r , c] =
M i
∑

m=1

K i
∑

kr ′=1

K i
∑

kc ′=1

Li+1[b,m, S
i × r + kr ′, S i × c + kc ′] ×W ′

i [n,m,kr
′,kc ′] (2)

Li [b,m, r , c] =

Li+1[b,m, r , c], Ai [b,m, r , c] > 0,

0, others
(3)

3.3 The Weight Update of A Convolutional Layer

The gradients of weights can be calculated in Eq. (4). The generated hardware implementation of the PE ar-
chitecture processing WU operations in the Conv kernel is shown in 2⃝ of Fig. 4. During the WU, the Conv
Kernel conducts MAC operations for the activation data transmitted via the IFM DMA channel and the loss data
transmitted via the OFM DMA channel. The gradients are stored in the Weight bufer. Once the Conv Kernel

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 11

completes the computation for the last image in a mini-batch, the original weights are transmitted via the WEI
DMA channel. Then, weights are updated by deducting the product of the gradients and learning rate. New
weights are sent back to DRAM via the OUT DMA channel.

dWi [m,n,kr ,kc] =
B
∑

b=1

Ri
∑

r=1

C i
∑

c=1

Li+1[b,m, r , c] ×Ai [b,n, S
i × r + kr , S i × c + kc] (4)

3.4 The Forward and Backward Propagation of A Pooling Layer

In the FP process of a pooling layer, the activation is transmitted via the IFM DMA channel and stored in the
IFM bufer. In the maximum pooling, the Pooling Kernel compares adjacent pixels, transfers the results back to
DRAM via the OUT DMA channel, and records the index for the maximal pixel into the Pooling Indexes bufer.
The index of a pixel is a 2-bit integer. For average pooling, the kernel just calculates the average value of a patch
of features. In the BP process of maximum pooling, the indexes are loaded back via the WEI DMA channel, and
loss from the previous layer is loaded via the IFM DMA channel. The Pooling Kernel compares the indexes and
stores the propagated value into the IFM bufer. The BP process of the maximum pooling is formulated in Eq. (5).
For average pooling, the loss values of a patch are directly accumulated. After a tile of data is processed, the
calculated loss is sent back via the OUT DMA channel.

Li [b,m, S
i × r + kr , S i × c + kc] =


Li+1[b,m, r , c],Ai+1[b,m, r , c] = Ai [b,m, S i × r + kr , S i × c + kc],

0,others
(5)

3.5 The Forward Propagation of A BN Layer

Our BN kernel is based on the computation low in [17]. However, unlike the prior work which utilizes half-
precision, we adopt full precisionwhich bringsmore computation and transmission challenges. The BN parameters
in Fig. 4 includes learnable parameters γi [m] and βi [m] and immediate parameters λi [m] and Âi [b,m, r , c], where
m is the index of the channel. The γi [m] and βi [m] are used to generate the immediate parameters and the output
activation Ai+1[b,m, r , c] during FP. During BP, the immediate parameters and the loss propagated from the next
layer Li+1[b,m, r , c] are used to update the learn parameters and propagate the loss Li [b,m, r , c] back. Since the
size of γi [m], βi [m], and λi [m] isM (the number of the output channels), the on-chip BRAMs are large enough to
hold these data in a BN layer. Therefore, we use the BN Parameters bufer to store these parameters as well as the
expected value and variance. The Âi [b,m, r , c] is transmitted to DRAM together with Ai+1[b,m, r , c].
In FP, the BN Kernel irst loads γi [m] and βi [m] from DRAM to the BN Parameters bufer via the WEI DMA

channel. Then it loads Ai [b,m, r , c] via the IFM DMA channel and calculates the expected value E (X)i [m] and
varianceV (X)i [m] according to Eq. (6)-(8). To avoid disarranging the DRAM data layout for adjacent Conv layers,
we load data tile by tile using the same data format as that in Conv layers. The expected value and variance are
calculated after the entire data of a mini-batch is accessed. Then input activation is loaded from the beginning to
calculate the immediate parameters according to Eq. (9) and Eq. (10), where ϵ is a constant parameter. λi [m] is
stored in the BN Parameters bufer, while Âi [b,m, r , c] is transmitted to DRAM via the OUT channel in parallel
with activation loading. Finally, the output activation is calculated according to Eq. (11). The BN operation
completes after the activation, γi [m], βi [m], and λi [m] are stored to DRAM.

E (X)i [m] =
1

B × Ri ×Ci

B
∑

b=1

Ri
∑

r=1

C i
∑

c=1

Ai [b,m, r , c] (6)

ACM Trans. Des. Autom. Electron. Syst.

12 • Tang and Hu, et al.

E (X 2)i [m] =
1

B × Ri ×Ci

B
∑

b=1

Ri
∑

r=1

C i
∑

c=1

A2
i [b,m, r , c] (7)

V (X)i [m] = E (X 2)i [m] − (E (X)i [m])2 (8)

λi [m] =
1

√

V (X)i [m] + ϵ
(9)

Âi [b,m, r , c] = (Ai [b,m, r , c] − E (X)i [m]) × λi [m] (10)

Ai+1[b,m, r , c] = Âi [b,m, r , c] × γi [m] + βi [m] (11)

3.6 The Backward Propagation of A BN Layer

In BP, Âi [b,m, r , c], λi [m] and Li+1[b,m, r , c] are used to update the learnable parameters γi [m] and βi [m], and
Li [b,m, r , c] is propagated back. λi [m], γi [m], and βi [m] are irst uploaded via the WEI channel and stored in the
BN Parameters bufer. Then, the BN Kernel loads Âi [b,m, r , c] and Li+1[b,m, r , c] via the IFM and OFM channel
respectively to calculate the gradients for γi [m] and βi [m] according to Eq. (12) and (13). The learnable parameters
are updated by deducting the gradients, while Li [b,m, r , c] is calculated according to Eq. (14).

dγi [m] =
B
∑

b=1

Ri
∑

r=1

C i
∑

c=1

Li+1[b,m, r , c] × Âi [b,m, r , c] (12)

dβi [m] =
B
∑

b=1

Ri
∑

r=1

C i
∑

c=1

Li+1[b,m, r , c] (13)

Li [b,m, r , c] = γi [m] × λi [m] × (Li+1[b,m, r , c] −
dβi [m]

B × Ri ×Ci
− Âi [b,m, r , c] ×

dγi [m]

B × Ri ×Ci
) (14)

4 DATA RESHAPING APPROACH

In this section, we propose a data reshaping approach to solve the communication bottleneck between the
on-chip bufer and of-chip memory in realistic end-to-end training processes. We irst analyze the discontinuous
memory access for the isolate accelerator with the uniied channel-level parallelism-based Conv kernel proposed
in Section 3. Then we introduce our data reshaping approach which involves three aspects. We irst achieve
intra-tile continuous memory allocation by reorganizing the DRAM layouts for input features, output features,
and weights. Then, we re-schedule the loop order to achieve inter-tile continuous memory allocation. These two
parts are optimized together. Finally, considering the training process involves convolution operations among a
mini-batch, we propose and apply a weight reuse strategy based on the proposed data layout.

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 13

4.1 Analysis on Discontinuous Memory Access

The pseudo-code of a tiled convolution layer is shown in Fig. 5. The pseudo-code in Fig. 5 (a) is applied in FP
and BP, following previous FPGA-based inference works [38, 39], while the pseudo-code in Fig. 5 (b) is applied
in WU, based on the accelerator design proposed in Section 3. As discussed in Section 2, the continuity of data
signiicantly inluences the DMA transmission eiciency. In this section, we analyze the data discontinuity when
features are placed with the BCHW pattern and the BHWC pattern, where B represents batch, C represents
channel, H represents height (row), and W represents width (column).

1. for (row=0; row<R; row+=Tr){

2. for (col=0; col<C; col+=Tc){

3. for (to=0; to<M; to+=Tm){

4. for (ti=0; ti<N; ti+=Tn){

5. for(i=0; i<K; i++){

6. for(j=0; j<K; j++){

7. for(trr=0; trr<Tr; trr++){

8. for(tcc=0; tcc<Tc; tcc++){

9. for(too=0; too<Tm; too++){

10. for(tii=0; tii<Tn; tii++){

OFM[too][trr][tcc] +=

WEI[too][tii][i][j]*IFM[tii][S*trr+i][S*tcc+j]

}}}}}}}}}}

(a) (b)

Off-chip data transmission

On-chip computation

1. for (to=0; to<M; to+=Tm){

2. for (ti=0; ti<N; ti+=Tn){

3. for (row=0; row<R; row+=Tr){

4. for (col=0; col<C; col+=Tc){

5. for(trr=0; trr<Tr; trr++){

6. for(tcc=0; tcc<Tc; tcc++){

7. for(i=0; i<K; i++){

8. for(j=0; j<K; j++){

9. for(too=0; too<Tm; too++){

10. for(tii=0; tii<Tn; tii++){

WEI[too][tii][i][j] +=

OFM[too][trr][tcc]*IFM[tii][S*trr+i][S*tcc+j]

}}}}}}}}}}

Off-chip data transmission

On-chip computation

Fig. 5. Pseudo-code of a tiled convolution layer. (a) Pseudo-code for FP and BP, (b) Pseudo-code for WU.

Features are placed in the BCHW pattern: Fig. 6 (a) shows the data layout of M i × Ri ×Ci output features
stored in DRAM for the ith layer. The output features are placed with the BCHW pattern commonly used in CNN
accelerating CPU, and GPU platforms [2, OpenVINO]. While OpenVINO [OpenVINO] is primarily for CPUs, it
would also work for CPU, GPU, and FPGA platforms. In this layout, a cube represents an element of the features,
and the indexes represent the orders of the elements stored in DRAM. In FPGA-based DNN deployments, data
are fetched and processed in tiles. As shown in Fig. 6, the size of a tile is Tm ×Tr i ×Tci for output features.

The output features of layer i are also the input features for its next layer j. As shown in Fig. 7 (a), the size of
the input features in layer j is N j × R j_in ×C j_in. For input features, the size of a tile is Tn ×Tr j_in ×Tc j_in.

In each DMA stream, the AXI-stream bus allows a pipeline data stream when the data addresses are continuous.
Burst length represents the number of data with continuous addresses in the data stream. When a discontinuity
happens, the DMA needs to be restarted. Therefore, our goal is to avoid discontinuity, i.e. elongate the burst
length for diferent transmission patterns.

During FP, the Conv Kernel conducts MAC operations with weights and input features, and then it generates
output features. The output features are transmitted to the DRAM via the OUT DMA channel, which is shown
in Fig. 6 (b). For the next layer, the input features are fetched from DRAM to the FPGA chip via the IFM DMA
stream, which is shown in Fig. 7 (b). As illustrated in Fig. 5 (a), in a Conv layer, the OFM bufer is reused to store
and accumulate the immediate convolution results between each tile of input features and each tile of weights.
The irst tile of output features is generated by accumulating the convolution results when the input features
tiles move from the irst input channel to the last channel. It corresponds to the movement in the X direction in
Fig. 7. Then, the next tiles of output features are generated in the X direction in Fig. 6, so the data access pattern
of input features (the dashed box in Fig. 7 (b)) repeats ⌈ M

Tm
⌉ times. After the output features tiles move from the

irst output channel to the last output channel, they begin to move in the Z direction, and the input features tiles

ACM Trans. Des. Autom. Electron. Syst.

14 • Tang and Hu, et al.

follow the Z direction as well. From Fig. 6 (b) and Fig. 7 (b), the address of data is discontinuous for both inside
and outside of a tile. The burst length of the output features in the ith layer is Tci , and the burst length of the
input features in the jth layer is Tc j_in. The data movement in BP is similar to that in FP. In WU, the data access
pattern inside a tile is the same as that in FP/BP. However, the inter-tile data access pattern is diferent from that
for FP/BP. It is because, in WU, the Conv Kernel conducts MAC operations for input features (the activation data
transmitted via the IFM DMA channel) and output features (the loss data transmitted via the OFM DMA channel)
to calculate weight gradients. Therefore, as shown in Fig. 5 (b), the WEI bufer is reused to store and accumulate
the immediate convolution result between each tile of input features and each tile of output features. The irst tile
of weight gradients is generated when the input and output features tiles move from the irst row and the irst
column to the last row and the last column. It corresponds to the movement in the Z direction in Fig. 6 and Fig. 7.
Then, the next tile of weight gradients is generated along the input channel direction. The tiles of input features
move along the X direction, while the pattern of output feature tiles (the dashed box in Fig. 6 (c)) repeats ⌈ N

Tn
⌉

times. After the gradients of weights are calculated from the irst input channel to the last input channel, the next
tiles are generated along the output channel direction. Thus, the pattern of input feature tiles (the dashed box in
Fig. 7 (c)) repeats ⌈ M

Tm
⌉ times, while the output feature tiles move along the X direction. As shown in Fig. 7 (c),

the burst length for input features is Tc j_in. As shown in Fig. 6 (c), the burst length for output features is Tci .
In CNN training, the data layout of weights is also more complex compared to the inference process. As

illustrated in Fig. 8 (a),M i × N i × K i × K i weights of layer i are stored in DRAM. In FP, weights are fetched in
the input channel irst and then the output channel when the output features are generated along the X direction
in Fig. 6. Then, the output features are generated along the Z direction, while the weights access pattern (the
dashed box in Fig. 8 (a)) repeats ⌈ R

T r
⌉ × ⌈ C

Tc
⌉ times. WU shares the same intra-tile weights access pattern with

FP, but it does not need to repeat during inter-tile data access. The burst lengths for FP and WU are both Tn.
In BP, each K i × K i kernel needs to be lipped. Such reallocation can be processed on the FPGA chip. However,
since the numbers of input channels and output channels are interchanged, the memory access pattern of a
tile is also changed. The weights kernels are transposed between the input channel dimension and the output
channel dimension. In Fig. 8, the yellow cubes represent a tile of weights in FP and WU, and the cubes with the
red box represent a tile of weights in BP. As illustrated in Fig. 8 (c), in BP, the number of output channels becomes
M i′
= N i , the number of input channels becomes N i′

= M i , and the burst length is Tm.
Features are placed in the BHWC pattern: As can be seen from Fig. 6, Fig. 7, and Fig. 8, the tiled data breaks
the data continuity of memory access in FP, BP, and WU for the isolate accelerator. In FPGA-based inference
works, the BHWC pattern is also commonly used in end-to-end designs to optimize memory access [6, 39]. Fig. 9
(a) and Fig. 10 (a) show the data layout of features placed in the BHWC pattern following previous inference-based
works. According to the loop order in Fig. 5 (a), in FP and BP, tiles move in the channel dimension irst and then
move in the Z direction. Therefore, it is efective to fetch ⌈ N

Tn
⌉ tiles of input features to the on-chip memory and

reuse the data after ⌈ M
Tm
⌉ tiles of output features are calculated. With such optimizations, the data discontinuity

of features is alleviated in FP and BP. As shown in Fig. 9 (b) and Fig. 10 (b), the burst length for output features is
M i ×Tci , and the burst length for input features is N j ×Tc j_in. Besides, the FPGA accelerator does not need to
repeatedly load the input feature tiles from the DRAM.

However, in WU, the Conv Kernel conducts MAC operations for input features and output features to calculate
weight gradients, so input and output feature tiles should move in the Z direction irst to calculate the weight
gradients of Tm ×Tn weights kernels and then move in the channel direction, which is illustrated in Fig. 5 (b).
Therefore, features cannot be continuously fetched to the on-chip bufer and reused as that in the inference phase
unless the on-chip memory is large enough to hold all features of each layer. When the on-chip memory cannot
hold all features of a Conv layer in resource-limited FPGAs, the burst length for output features is Tm, and the
burst length for input features is Tn. The data layouts are shown in Fig. 9 (c) and Fig. 10 (c).

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 15

In CNN inference, weights will not change in the whole process, and they are loaded in the same pattern for
diferent layers. Therefore, in the inference phase, weights can be pre-allocated tile by tile to ensure continuous
memory access. The pre-allocated data layout is illustrated in Fig. 11 (a). As shown in Fig. 11 (b) and Fig. 11 (d),
the burst length isM i ×N i in FP and WU. However, as illustrated in Fig. 11 (c), the weight kernels are transposed
between the input channel dimension and the output channel dimension, and the tiling scheme in BP breaks the
memory access continuity. Since weights are updated after one iteration of FP, BP, and WU, it is impossible to
pre-allocate them before each iteration. Therefore, data discontinuity is inevitable in BP. As shown in Fig. 11, the
burst length is Tm.

4.2 Optimizing Discontinuous Memory Access

To optimize the discontinuous memory access, our data reshaping approach includes the following steps. Firstly,
we achieve intra-tile continuous memory allocation for both features and weights by reorganizing the DRAM
layouts for output features, input features, and weights which are shown in Fig. 12, Fig. 13, and Fig. 14 respectively.
Then we schedule the loop order based on the pseudo-code in Fig. 15 to achieve inter-tile continuous memory
allocation. Finally, weights are reused among a mini-batch based on the proposed data layouts. In this section,
we reorganize the data layouts and schedule the loop order together to achieve both intra-tile and inter-tile
continuous memory address allocation.
Intra-Tile Continuous Memory Allocation: Inspired by previous inference works [6, 39], employing channel-
last data layout can improve data continuity for the channel-level parallelism-based accelerator. However, as
explained in Section 4.1, simply changing the data layout cannot optimize the memory access continuity in FP,
BP, and WU together. The memory access patterns in the three processes need to be considered together. In CNN
inference, the selection of Tm and Tn is lexible. However, to ensure data continuity of weights kernels in both
FP and BP, we ixTm = Tn in our training accelerator so that weights can be loaded tile by tile in both FP and BP.
Fig. 12 (a) shows the data layout of the output features in DRAM after data reshaping. The irst Tm channels of
OFMs are placed in the row-column-channel pattern. The next Tm channels of OFMs are followed with the same
pattern. When applying loop tiling, we assign the tiling parameter Tci = Ci so that data are continuous inside a
tile for both FP and WU. From Fig. 12 (b) and (c), the burst lengths of output features during FP, BP, and WU are
larger than the size of a tile.
The selection of Tm = Tn, Tci = Ci , and Tci_in = Ci_in also guarantee that features of diferent layers share

similar data layouts and tiling schemes no matter they serve as output features or input features of a Conv layer
in FP/BP/WU. Therefore, the intra-tile continuity of input features is also guaranteed. The data layout of the
input features in DRAM for the jth layer is shown in Fig. 13 (a). According to Fig. 13 (b) and (c), the burst length
equals the size of a tile.

After selectingTm = Tn, weights can be placed and fetched tile by tile during FP, BP, and WU. The data layout
is illustrated in Fig. 14. Before data reshaping, weights need to be repeatedly transmitted between the FPGA
chip and the DRAM in FP and BP, which is ineicient especially for mini-batch training. Therefore, weight reuse
based on our unique data layout is necessary which will be introduced in detail in Section 4.3. After reshaping,
the burst length for FP and WU isM i × N i , while the burst length for BP is Tm ×Tn, which are shown in Fig. 14
(b) and (c), respectively.
Inter-Tile Loop Order Optimization: The proposed data reshaping approach also achieves inter-tile data
continuity by rescheduling the loop order in Fig. 5. The loop order of 1, 2, and 3 in Fig. 5 (a) does not have data
dependency. Based on our data layout, we move loop 3 to the outermost loop so that the output features share
similar memory access patterns in FP/BP and WU. The loop order of of-chip data transmission in FP/BP is shown
in Fig. 15 (a). As shown in Fig. 12 and Fig. 13, in FP/BP, tiles of input features are fetched in the X direction
irst to generate the irst output features tile. Then the tiles of output features are generated and stored in the Y

ACM Trans. Des. Autom. Electron. Syst.

16 • Tang and Hu, et al.

direction irst, so the input features tiles movement follows the Y direction as well. Then the output features tiles
are generated and stored in the X direction, and the access pattern of input features repeats ⌈ M

Tm
⌉ times. The

burst length of output features in the OUT DMA channel isM i × Ri ×Ci .
The loop order in Fig. 15 (b) is adopted in WU. From Fig. 12 and Fig. 13, tiles of both input features and output

features are fetched and stored in the Y direction irst to calculate weights gradients for the irst tile. Then weights
are updated along the input channel dimension, so the input features tiles move in the X direction, while the
output features access pattern (the dashed box in Fig. 12 (c)) repeats ⌈ N

Tn
⌉ times. After that, weights are updated

along the output channel dimension, so the output features tiles move in the X direction, while the input features
access pattern (the dashed box in Fig. 13 (c)) repeats ⌈ N

Tn
⌉ times. The burst length of output features in the

OFM DMA channel is Tm × Ri × Ci . When the IFM bufer and the OFM bufer are large enough to hold the
Tn × Ri_in ×Ci_in input and Tmi × Ri ×Ci output features, i.e. Ri ≤ Tr i , the output features do not need to be
repeatedly loaded. The loop order can be optimized as shown in Fig. 15 (c).

4.3 Weight Reuse in Mini-batch Training

Based on the above-mentioned optimization, we further reduce DRAM data access by reusing weights in mini-
batch training. Diferent from inference, training involves processing a batch of data at once, so data reuse
is necessary to decrease the transmission times of weights between on-chip bufer and of-chip memory. On
FPGAs, a BRAM bank size is large enough to store multiple tiles of weights. Therefore, we propose a weight
reuse strategy based on our data layout. Thanks to our loop order shown in Fig. 15, we can load weights only
when the accelerator processes the output feature tile lying in the irst row. As illustrated in Fig. 16, when the
accelerator processes a tile of features in the irst row of the irst image in a batch,M i_on ×N i ×K i ×K i weights
are loaded and stored in the WEI double bufers, whereM i_on is the multiple of Tm depending on the on-chip
BRAM resources. After the irstM i_on channels of OFMs in the image are processed, the irstM i_on channels
of OFMs of the next image will be processed, so weights do not need to be uploaded again. The next M i_on
channels of the irst image will be processed after the irstM i_on channels of all images in the batch are processed.
Therefore, weights do not need to be transmitted back and forth. After the above-mentioned steps, the burst
length isM i × N i for FP/WU and Tm ×M i_on′ for BP, which are illustrated in Fig. 16 (b) and (c) respectively.

In mini-batch training, weight reuse will not afect the burst length of output features in WU and input features.
For output features in FP and BP, after the irst M i_on channels of OFMs of the irst image are transmitted to
DRAM, the next image of the batch will be processed before other channels of the prior image. Therefore, as
shown in Fig. 17, the burst length isM i_on × Ri ×Ci .

5 PERFORMANCE AND RESOURCE MODEL

In this section, we establish an analytic model to calculate the latency and resources for our design. Unlike
previous works [10, 38] which only focused on the performance of a bare accelerator running on separate Conv
layers, our model considers the discontinuity of of-chip memory access in a realistic end-to-end training process.
Based on the model, we build a scheduling tool to determine design parameters for given FPGA devices and
given network models.

5.1 Performance Model

For a [M i ,N i ,Ri ,Ci ,K i ,K i , S i] Conv layer i , we assume the parameters of a tile is [Tm,Tn,Tr i ,Tci]. Tm and
Tn are ixed for all layers since they are determined by the number of DSPs, while Tr i and Tci are adjustable
according to diferent layer parameters. In our design, Tm = Tn, and Tci = Ci . The computation latency of a tile
of features in FP, BP, and WU can be represented as t i

COMP
= Tr i ×Tci × K i × K i clock cycles.

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 17

The continuity of memory address signiicantly impacts the of-chip communication eiciency. To consider the
memory access discontinuity, we assume the start time of the DMA stream is tstar t . When discontinuity happens,
DMA restarts. We have tested the start time on both the PYNQ-Z1 and the ZCU102 board, and tstar t ≈ 400 cycles
under 100MHz clock. We determine the data width parameters p to model the of-chip/on-chip communication
bandwidth. For 32-bit loating-point, if the DMA stream width is 128 bits, p = 4. Since the burst length of input
features equals the size of a tile, discontinuity happens every time a tile of input features are fetched. The latency
of loading a tile of input features is formulated as t i

I FM
= tstar t + ⌈

Tn
p
⌉ × ((Tr i −1)×S i +K i)× ((Tci −1)×S i +K i)

clock cycles. The weights loading latency can be represented as t i
W EI

= ⌈Tm×Tn
p
⌉ × K i × K i clock cycles,

and the latency of storing a tile of output features is formulated as t i
OUT

= ⌈Tm
p
⌉ × Tr i × Tci clock cycles.

tstar t is added to t i
W EI

and t i
OUT

only when the discontinuity happens, which will be discussed in detail as

follows. We deine t i
LOAD

= max
{
t i
I FM
, t i
W EI

}
, t i

PROD1 = max
{
t i
I FM
, t i
COMP

}
, t i

PROD2 = max
{
t i
LOAD

, t i
COMP

}
,

and t i
STORE

= max
{
t i
COMP

, t i
OUT

}
.

We assume in layer i ,M i_on ×Tn × K i × K i weights are stored on-chip. If the batch size is B, weights will be
loaded only during the iteration when the proposed accelerator processes the irst image in the batch. For other
iterations, the latency of processingM i_on channels of an image in FP can be formulated as follows.

Lat1i = ⌈
N i

Tn
− 1⌉ × t iPROD1 + t

i
I FM + t

i
COMP (15)

Lat2i = ⌈
N i

Tn
− 1⌉ × t iPROD1 + t

i
I FM + t

i
STORE (16)

Lat3i = (⌈
M i_on

Tm
⌉ × ⌈

Ri

Tr i
⌉ − 1) × Lat2i + Lat1i + t iOUT + t

i
star t (17)

Weights need to be loaded when our accelerator processes the irst image in the mini-batch. In FP, tstar t can be
neglected in weight transmission since the burst length equals the size of weights, which means the addresses are
continuous during the whole Conv layer. Therefore, the latency of the proposed accelerator processingM i_on
channels of the irst image can be formulated as follows.

Latb1i = ⌈
N i

Tn
− 1⌉ × t iPROD2 + t

i
LOAD + t

i
COMP (18)

Latb2i = ⌈
N i

Tn
− 1⌉ × t iPROD2 + t

i
LOAD + t

i
STORE (19)

Latb3i = ⌈
M i_on

Tm
⌉ × ⌈

Ri

Tr i
− 1⌉ × Lat2i + ⌈

M i_on

Tm
− 1⌉ × Latb2i + Latb1i + t iOUT + t

i
star t (20)

The latency of our accelerator processing the whole Conv layer in FP is formulated in Eq. (21).

Lat i = ⌈
M i

M i_on
⌉ × ((B − 1) × Lat3i + Latb3i). (21)

In BP, the situation is similar to that in FP, except that the addresses of weights are discontinuous afterM i_on
channels. The accelerator loadsM i_on ×Tn × K i × K i weights together when processing the irst tile of the irst

image, so it costs t i
W EI
= ⌈

M i _on×Tn
p

⌉ ×K i ×K i
+ t istar t clock cycles. Lat1

i , Lat2i , Lat3i , Lat2i , Latb1i , and Latb2i

remain unchanged, while Latb3i = (⌈M
i _on
Tm
⌉ × ⌈ R

i

T r i
⌉ − 1) × Lat2i + Latb1i + t i

OUT
+ t istar t .

In WU, loss features are loaded from the of-chip memory to the OFM bufer. Transmitting a tile of loss features
costs t i

OFM
= t istar t + Tr

i × Tci × ⌈Tm
p
⌉ clock cycles. Weights are updated after all the gradients of the batch

are accumulated, so transmitting the updated weights costs the same time as loading weights, which means

ACM Trans. Des. Autom. Electron. Syst.

18 • Tang and Hu, et al.

t i
OUT
=t i

W EI
. Same with FP, tstar t can be neglected when calculating t i

W EI
. We deine t i

LOAD
= max

{
t i
I FM
, t i
OFM

}
,

t i
PROD1 = max

{
t i
LOAD

, t i
COMP

}
, t i

PROD2 = max
{
t i
I FM
, t i
COMP

}
, and t i

STORE
= max

{
t i
COMP

, t i
OUT

}
. The latency

of WU of the ith Conv layer is formulated as follows.

Lat1i = ⌈
Ri

Tr i
− 1⌉ × t iPROD1 + t

i
LOAD + t

i
COMP (22)

Latb1i = ⌈
Ri

Tr i
− 1⌉ × t iPROD1 + t

i
LOAD + t

i
STORE (23)

Lat i = (((B − 1) × ⌈
M i_on

Tm
⌉ × ⌈

N i

Tn
⌉ + 1) × Lat1i + (⌈

M i_on

Tm
⌉ × ⌈

N i

Tn
⌉ − 1) × Latb1i + t iOUT) × ⌈

M i

M i_on
⌉ (24)

As illustrated in Fig. 15 (c), when Ri ≤ Tr i , the output features do not need to be repeatedly loaded. Under this
circumstance, the latency of WU is formulated as follows.

Lat1i = ⌈
N i

Tni
− 1⌉ × t iPROD2 + t

i
LOAD + t

i
COMP (25)

Latb1i = ⌈
N i

Tni
− 1⌉ × (t iPROD2 + t

i
OUT) + t

i
LOAD + t

i
COMP + t

i
OUT (26)

Lat i = ⌈
M i

M i_on
⌉ × ⌈

M i_on

Tm
⌉ × ((B − 1) × Lat1i + Lat1bi) (27)

5.2 Resource Model

For Conv layers, the on-chip resources that need to be considered for Conv layers include DSPs and BRAMs. For
DSPs, Tm ×Tn MAC operations are conducted in parallel. Therefore, the computation constraint is shown in
Eq. (28), where q is the factor depending on data types. On Xilinx FPGAs, each MAC utilizes 5 DSPs for 32-bit
loating-point, so q = 5 in the proposed design. In terms of on-chip memory, we select double bufers to load
and store data and conduct Conv operations in parallel. The number of BRAM banks for each IFM bufer and
OFM bufer are shown in Eq. (29) and Eq. (30) respectively. The notation BITs is the data bit-width adopted in the
design. For the Weight bufer, we placeM i_on×N i kernels together for weight reuse. These data are scattered in
double bufers. The number of BRAM banks for one Weight bufer is shown in Eq. (31). The on-chip memory
constraint is shown in Eq. (32).

DConv = q ×Tm ×Tn < total DSPs number (28)

BI FM = max
i

BiI FM = max
i

{

Tn × ⌈
((Tr i − 1) × S i + K i) × ((Tci − 1) × S i + K i) × BITs

Size o f a BRAM Bank
⌉

}

(29)

BOFM = max
i

BiOFM = max
i

{

Tm × ⌈
Tr i ×Tci × BITs

Size o f a BRAM Bank
⌉

}

(30)

BWEI = max
i

BiW EI = max
i


Tm ×Tn × ⌈

K i × K i × ⌈ N i

2×Tn ⌉ × ⌈
M i _on
Tm
⌉ × BITs

Size o f a BRAM Bank
⌉


(31)

BConv = 2 × (BI FM + BOFM + BWEI) < total BRAMs number (32)

It should be noted that in realistic end-to-end system design, the boundary of DConv and BConv should be
slightly smaller than the total DSPs and BRAMs numbers. It is because except for the MAC operations, several
operations also take up a small fraction of on-chip resources. For example, some non-Conv layers (e.g. maximum
pooling, average pooling, ReLU, etc.), which are inevitable in practical end-to-end training processes need extra
DSPs to make comparisons and extra BRAMs to bufer the indexes. Besides, some neural networks have irregular
weights kernel shapes for diferent Conv layers. Adding an extra bufer to fetch a tile of weights from the

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 19

on-chip Weight bufer to the Conv Kernel can relieve the routing congestion in realistic FPGA implementation.
Besides, since FP, BP, WU have diferent loop orders, extra DSPs are utilized to calculate BRAM addresses under
diferent layer parameters. This address calculation is much more complex than that in inference. Therefore, in
practical design, the estimated boundary of the on-chip resources should be set lower than the available resources
empirically. The details will be further explained in Section 5.3.

5.3 Computation and Memory Resources Scheduling Tool

Based on the above-mentioned model, we build a computation and memory resources scheduling tool for diferent
devices and diferent networks. Algorithm 1 shows the framework of our scheduling tool. As mentioned in
Section 5.2,DConv and BConv are lower than the total DSPs and BRAMs numbers in realistic FPGA implementation.
Therefore, it is wise to set a boundary for DConv and BConv that is lower than the available on-chip resources.
According to the experimental results in Section 6, assigning 80% of DSPs and 75% BRAMs to the estimated
boundary for DConv and BConv should be enough. Then we determine Tm and Tn according to the DSPs number.
Then we choose the optimal Tr i ,Tci , andM i_on for each layer according to Eq. (15) - (27). Speciically, in steps 3
and 4, we ind the lower bound for BI FM and BOFM by assuming that the bufers can only hold one row for the
largest feature maps. Then, from step 5 to step 12, we try to assign resources for Weight bufers so that they can
hold as many weights for each layer as possible. After we determine BWEI andM i_on for each layer, we re-assign
IFM and OFM bufers under the constraints shown in Eq. (29), (30), and (32), and ind the optimal Tr i and Tci for
each layer. After Tm, Tn, and [Tr i ,Tci ,M i_on]1≤i≤n are determined, we can calculate the DMA start addresses
for each layer of-line based on the data reshaping approach in Section 4.

6 EXPERIMENTS

The proposed work is evaluated on edge-level FPGAs PYNQ-Z1 and ZCU102 with working frequency at 100MHz.
The accelerator is designed with Vivado HLS, which generates IP core from C language. The obtained IP cores
are connected, synthesized, and implemented in Vivado (v2019.1). The Vivado Project Summary reports resource
utilization and power after implementation. Finally, we employ Xilinx SDK to program SoC on PYNQ-Z1 and
ZCU102 to achieve end-to-end CNN training.

6.1 Efectiveness of The Data Reshaping Approach

In this section, we need to validate the efectiveness of the proposed data reshaping approach ([Tm,Tn] = [16, 16]).
We test the Conv layers of the AlexNet on ZCU-102. We select the batch size B as 4 and the DMA stream width
as 128 bits. We adopt the results using the BCHW data layout and the results using the BHWC data layout as
baselines ([TmBase ,TnBase] = [32, 8]). The BCHW pattern does not involve any optimization. For the BHWC
pattern, N /Tn tiles of input features andM/Tm tiles of the output features are bufered in the on-chip BRAM for
data reuse based on the loop order in the inference phase. Weights are pre-allocated tile by tile based on the data
low in inference. The comparisons are shown in Tables 3, 4, and 5.
As mentioned in Section 2.3, our goal is to design a general accelerator supporting end-to-end training with

both dense and small networks without sacriicing precision, so it is necessary to appropriately manage external
memory access and allocate on-chip bufers. When applying loop tiling, the tiling schemes involved in the
accelerator design break the continuity of data addresses in DRAM and thus reduce the transmission eiciency
between on-chip bufer and of-chip DRAM. Table 3 shows the experimental results of our baseline which is a
bare accelerator with the uniied channel-level parallelism-based convolution kernel. It does not involve any
optimizations related to the of-chip DRAM access policy. As illustrated in Section 4, the burst length before data
reshaping is much smaller than the size of a tile. To ensure that the accelerator conducts MAC operations with
correct features and weights matrices in realistic end-to-end training, data should be reallocated before being

ACM Trans. Des. Autom. Electron. Syst.

20 • Tang and Hu, et al.

Table 3. Experimental Results of The Baseline with The BCHW Data Layout

AlexNet Process [Tr i
Base
,Tci

Base
]

Acceleration
(cycles)

Reallocation
(cycles)

Total
(cycles)

Conv 1 FP
BP
WU

[11, 11]
N/A

[11, 11]

6,732,837
N/A

4,496,029

151,846,336
N/A

152,110,235

158,579,173
N/A

156,606,264
Conv 2 FP

BP
WU

[27, 27]
[27, 27]
[27, 27]

7,105,292
7,066,705
9,258,823

69,743,160
68,271,764
57,303,397

76,848,452
75,338,469
66,562,220

Conv 3 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,410,532
2,401,320
4,448,898

101,062,954
98,646,892
83,566,193

103,473,486
101,048,212
88,015,091

Conv 4 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

3,596,425
3,596,400
6,669,238

150,012,382
149,621,995
126,214,297

153,608,807
153,218,395
132,883,535

Conv 5 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,401,212
2,410,637
4,448,751

102,632,162
99,408,011
84,518,969

105,033,374
101,818,648
88,967,720

Total 67,043,099 1,494,958,747 1,562,001,846

Table 4. Experimental Results of The Baseline with The BHWC Data Layout and Data Reuse

AlexNet Process [Tr i
Base
,Tci

Base
]

Acceleration
(cycles)

Reallocation
(cycles)

Total
(cycles)

Conv 1 FP
BP
WU

[11, 11]
N/A

[11, 11]

8,094,251
N/A

4,495,794

N/A
N/A

161,048,775

8,094,251
N/A

165,544,569
Conv 2 FP

BP
WU

[27, 27]
[27, 27]
[27, 27]

7,383,996
7,382,504
7,848,249

N/A
68,200,715

N/A

7,383,996
75,583,219
7,848,249

Conv 3 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,531,247
2,529,216
3,345,845

N/A
100,372,954

N/A

2,531,247
102,902,170
3,345,845

Conv 4 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

3,745,972
3,745,922
4,999,576

N/A
148,657,460

N/A

3,745,972
152,403,382
4,999,576

Conv 5 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,529,173
2,531,318
3,364,408

N/A
100,586,051

N/A

2,529,173
103,117,369
3,364,408

Total 64,527,471 578,865,955 643,393,426

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 21

Algorithm 1 Computation and Memory Resources Scheduling
Input:

CNN layers parameters [M i ,N i ,Ri ,Ci ,K i ,K i , S i]1≤i≤n , batch size B, data type parameter q, DMA stream
width, total DSPs number, total BRAMs number;

Output:

Tm, Tn, [Tr i ,Tci ,M i_on]1≤i≤n , BI FM , BOFM , BWEI ;
1: Estimate the boundary for DConv and BConv ;
2: Assign Tm, Tn according to Eq. (28), while Tm = Tn;
3: Find k = argmax

i

{
Ri ×Ci

}
;

4: Determine the lower bound for BI FM and BOFM , i.e. inf BI FM = Bk
I FM

, inf BOFM = Bk
OFM

, when Tck = Ck ,

Trk = 1;
5: for i = 1; i ≤ n; i + + do

6: Calculate Bi
W EI

based on (31) whenM i_on = M i , and initialize l = 1;
7: if 2 × (inf BI FM + inf BOFM + B

i
W EI

) ≥ estimated BConv boundary then

8: l++;
9: Find the minimalM i_on satisfying M i

l
≤ M i_on,M i_on mod Tm = 0, and go to step 7;

10: end if

11: end for

12: Calculate BWEI andM i_on for each layer based on Eq. (31);
13: for i = 1; i ≤ n; i + + do

14: Set Tci = Ci , and select all Tr im satisfying Eq. (29), (30), and (32), where 1 ≤ Tr im ≤ Ri ;
15: Determine Tr i = argmin

m
Lat im based on Eq. (15)- (27);

16: end for

17: Calculate BI FM and BOFM based on Eq. (29), (30);

transmitted from DRAM to the on-chip accelerator. Therefore, our baseline includes the on-chip acceleration time
and of-chip reallocation time. After applying data reshaping, data can be fetched from DRAM to the accelerator
directly without extra reallocation.
For Conv 1, the number of input channels is only 3, TnBase = 8, and Tn = 16. Therefore, 5/8 computation

resources remain idle for the baseline, while 13/16 computation resources for our proposed design remain idle.
That’s why the acceleration time for the baseline is shorter than the latency in our proposed design. However,
features should be reallocated before entering the next layer (for FP) or after being generated from the prior
layer (for WU). As shown in Table 3, the reallocation time is much longer than the acceleration time. For
Conv 2 to Conv 5, Tr i ≥ Ri and Tci ≥ Ci , so features do not need to be reallocated between adjacent layers,
but weights still need to be reallocated before entering the Conv layer (for FP and BP) or updated from the
Conv layer (for WU). To sum up, the total acceleration time for the baseline is close to that for our proposed
design under the same degree of parallelism (TmBase ×TnBase = Tm ×Tn) and tile size boundary of features
(max

i
Tr i

Base
×max

i
Tci

Base
= max

i
Tr i ×max

i
Tci), but the extra reallocation time in realistic end-to-end training

is even longer than the acceleration time. Therefore, accelerating without considering the actual data layout in
DRAM between adjacent layers is ineicient in realistic end-to-end training.
The baseline in Table 4 uses the BHWC data layout and applies data reuse to alleviate the discontinuous

memory access. As illustrated in Figs. 9-11, features and weights are continuous in a long burst length in FP,
so data are not reallocated during the Conv layers. Such an approach is eicient in the inference phase. In BP,

ACM Trans. Des. Autom. Electron. Syst.

22 • Tang and Hu, et al.

Table 5. Experimental Results Validating Data Reshaping Approach

AlexNet Process [Tr i ,Tci]
Without Weight Reuse

(cycles)
After Weight Reuse

(cycles)

Conv 1 FP
BP
WU

[2, 55]
N/A
[2, 55]

11,498,545
N/A

9,598,744

11,419,835
N/A

9,299,086
Conv 2 FP

BP
WU

[27, 27]
[27, 27]
[27, 27]

7,283,187
7,128,663
7,910,148

7,312,794
7,146,578
7,430,533

Conv 3 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,491,672
2,461,694
3,402,418

2,510,310
2,671,392
2,706,696

Conv 4 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

3,689,930
3,688,961
5,053,485

3,708,934
3,972,757
4,014,651

Conv 5 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,462,778
2,490,897
3,373,373

2,475,263
2,686,910
2,677,726

Total 72,534,495 70,033,465

although the memory access pattern of features is the same as that in FP, the weights transmission patterns are
quite diferent. As shown in Fig. 11 (c), the burst length is much less than the size of a tile, so weights should be
reallocated in each Conv layer. The extra reallocation time is much longer than the acceleration time. In WU, the
on-chip bufer can hold all the features for Conv 2-Conv 5 layers, so it is practical to load all the features to the
FPGA chip without extra reallocation. However, in the Conv 1 layer, the on-chip memory cannot hold all the
features. Even though the input features can be pre-allocated before entering into the neural network since they
serve as the inputs for the whole process, the output features which are calculated in BP cannot be allocated
ahead of time. Therefore, the Conv 1 layer also requires extra reallocation time in WU, which is quite ineicient.

As mentioned in Section 4, we optimize the DRAM access incrementally. We irst achieve intra-tile continuous
memory allocation by reorganizing the DRAM layouts for input features, output features, and weights. Then we
re-schedule the loop order to achieve inter-tile continuous memory allocation. These two parts are combined to
improve memory access continuity together when the batch size is 1. Considering the training process involves
convolution operations among a mini-batch, we further propose and apply a weight reuse strategy based on the
proposed data layout. Table 5 shows the experimental results of the data reshaping approach without weight
reuse and after weight reuse. The batch size is also 4, and the latency for FP/BP without and after weight reuse is
nearly the same. It is because, in FP and BP, input features and weights are transmitted together. As can be seen
from Section 5, When ⌈Tn

p
⌉ × ((Tr i − 1) × S i + K i) × ((Tci − 1) × S i + K i) > ⌈Tm×Tn

p
⌉ × K i × K i , t i

I FM
> t i

W EI
.

Therefore, reusing the weights may not reduce the latency as a whole. However, in WU, the latency with weight
reuse is apparently less than that without reuse. It is because the transmission of weights happens during storing
the results in WU, which cannot be totally covered by t i

COMP
(For example, in the last iteration of the loop in line

2 from Fig, 15 (b) and the loop in line 3 from Fig, 15 (c)). As a whole, reusing weights can reduce the latency of
the training phase of the whole network. Fig. 18 shows the latency without and with weight reuse when the

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 23

Table 6. Experimental Results Validating The Performance Model

AlexNet Process [Tr i ,Tci ,M i_on] Our Model (cycles) On-board (cycles) Deviation

Conv 1 FP
BP
WU

[2, 55, 96]
N/A

[2, 55, 96]

11,504,640
N/A

9,043,384

11,419,835
N/A

9,299,086

0.74%
N/A
2.75%

Conv 2 FP
BP
WU

[27, 27, 112]
[27, 27, 48]
[27, 27, 112]

7,309,808
7,126,784
7,423,616

7,312,794
7,146,578
7,430,533

0.04%
0.28%
0.09%

Conv 3 FP
BP
WU

[13, 13, 112]
[13, 13, 112]
[13, 13, 112]

2,478,272
2,566,987
2,682,240

2,510,310
2,671,392
2,706,696

1.28%
3.91%
0.90%

Conv 4 FP
BP
WU

[13, 13, 112]
[13, 13, 112]
[13, 13, 112]

3,646,400
3,861,220
3,960,960

3,708,934
3,972,757
4,014,651

1.69%
2.81%
1.34%

Conv 5 FP
BP
WU

[13, 13, 112]
[13, 13, 112]
[13, 13, 112]

2,432,368
2,618,372
2,640,640

2,475,263
2,686,910
2,677,726

1.73%
2.55%
1.38%

Total 69,295,691 70,033,465 1.05%

batch size ranges from 2 to 128. It shows that when the batch size increases, applying the reuse strategy has more
apparent advantages than only achieving intra-tile and inter-tile data access continuity.

6.2 Accuracy of The Performance Model

After displaying the efectiveness of the data reshaping approach, we use the AlexNet to validate the accuracy
of the performance model. Our scheduling tool irst determines optimal tiling parameters which are shown in
Table 6. Then the latency is estimated by our model and tested on-board separately. As shown in Table 6, the
estimated results are close to the tested results. The results verify the accuracy of the performance model.

6.3 CNN Training Performance

In this section, we conduct end-to-end evaluations on diferent neural networks. We irst compare our design
with the automatic compiler-based FPGA accelerator [28]. It adopted a combination of channel-level parallelism
and feature map-level parallelism with the unrolling factors for columns, rows, and output channels. It initially
stored weights tile by tile in a transposable format in DRAM and read the entire weights of a Conv layer from
DRAM to their on-chip bufer. The baseline implemented a âĂŸ1XâĂŹ CNN on the CIFAR-10 dataset with the
structure as Conv 1 ([M i ,N i ,Ri ,Ci ,K i , S i] = [16, 3, 32, 32, 3, 1]) - Conv 2 ([16, 16, 32, 32, 3, 1]) - Pooling - Conv 3
([32, 16, 16, 16, 3, 1]) - Conv 4 ([32, 32, 16, 16, 3, 1]) - Pooling - Conv 5 ([64, 32, 8, 8, 3, 1]) - Conv 6 ([64, 64, 8, 8, 3, 1])-
Pooling - FC ([10, 1024, 1, 1, 1, 1]), using 16-bit ixed-point precision. We test the same network on both PYNQ-Z1
and ZCU102 boards. The DMA stream bandwidth is 128 bits for ZCU102 and 32 bits for PYNQ-Z1. Our design
focuses on implementing on-device FPGAs without sacriicing precision, so 32-bit loating-point is adopted.
Vivado utilization report provides the utilization of BRAMs, DSPs, and the power report provides the total on-chip
power. We measure the latency of training the whole batch with the batch size of 128. Then we calculate the
latency per image and the throughput.

ACM Trans. Des. Autom. Electron. Syst.

24 • Tang and Hu, et al.

Table 7. Experimental Results on the ’1X’ CNN

Baseline [28] Ours Ours

Platform Stratix 10 GX PYNQ-Z1 ZCU102
Frequency (MHz) 240 100 100
DSP Utilization 1699 (30%) 212 (96.4%) 1315 (52.2%)

DConv (DConv/Used DSPs) 180 (84.9%) 1280 (97.3%)
BRAM Utillization 10.6 (4.4%) 123 (87.9%) 324 (35.5%)

BConv (BConv/Used BRAMs) 108 (87.8%) 288 (88.9%)
Power (W) 20.6 1.85 (11.14X) 6.89 (2.99X)
Data Type Fixed 16 FP 32 FP 32
Batch Size 40 128 128

Latency/Image (ms) 0.36 14.32 2.08
Throughput 163 GOPS 4.08 GFLOPS 28.15 GFLOPS

Nominal Throughput
(GOPS× precision)

2608 130.56 900.8

Energy Eiciency 7.90 GOPS/W 2.21 GFLOPS/W 4.09 GFLOPS/W
Nominal Efciency

(GOPS× precision/W) 126.4 70.72 130.88 (1.04X)

Table 7 shows the comparison results between the baseline [28] and our design in terms of resource utilization,
throughput, energy eiciency, etc. The Stratix 10 GX adopted in the baseline is an advanced FPGA board developed
by Intel. It is unfair to compare the throughput directly for diferent devices. However, energy eiciency is an
important metric to judge the performance of edge devices, thus we use energy eiciency as the metric for
diferent designs on diferent FPGAs. We nominate the throughput and eiciency by multiplying the bit width of
the data type. Although using the ixed-point data type is much more DSP-eicient and power-eicient than
adopting loating-point under the same bit width, our nominal eiciency still can outperform that of the baseline.
The reason is that the baseline has more data transmission latency especially for WU where accessing weight
gradients, weights, and storing back the updated values leads to DRAM access latency. 51% percent of the overall
latency in one iteration of a batch is consumed in WU [28]. Fig. 19 shows the latency breakdown of our design.
The total latency for each training process is calculated by summarizing latency for each Conv layer, and the
latency for MAC is the theoretical computation latency calculated by accumulating t i

COMP
for each Conv layer

based on the performance model. Since the ’1X’ CNN is a relatively small network, the number of loops is also
small. According to the performance model, although double bufers are adopted, the computation and data
transmission is conducted in sequential in the irst and last iteration of the loop, while they are in parallel for the
middle iterations. Therefore, when the number of loops is small, the proposed design also includes much data
transmission latency for FP, BP, WU. However, other optimizations like loop order scheduling and weight reuse
in a mini-batch reduce the number of of-chip memory access. Therefore, our computation latency is still much
more than 50% percent of the total latency in FP, BP, or WU, which takes up a larger proportion compared with
the baseline.

Besides, the baseline stored the entire weights of a Conv layer from DRAM to the on-chip bufer. Their design
cannot support denser networks where the on-chip bufer cannot hold the entire weights of each Conv layer.
However, our design does not have such restrictions and can support many larger networks.

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 25

In Table 7, the DConv and BConv are the DSPs and BRAMs numbers for the Conv layer estimated by our
resource model. The percentage shows the ratio between the estimated resources and actual resources used in
the whole end-to-end training. As mentioned in Section 5.2 and Section 5.3, DConv and BConv are lower than the
DSPs and BRAMs numbers used in the realistic end-to-end training process. For ’1X’ CNN, the extra on-chip
resources mainly function for maximum pooling layers. Besides, a few DSPs are utilized to calculate BRAM
addresses of features and weights.
To validate the correctness of our design, we also implement the whole training phase of the ’1X’ CNN on

ZCU102 and compare the training result with that on GPU. We load the Cifar-10 dataset from the secure digital
(SD) card to the DRAM and run 50 epochs. The batch size is also 128, and the learning rate is 0.008. We use the
V-100 GPU from AWS to validate the training process. The loss curves are shown in Fig. 20. Since we adopt full
precision and have not changed the training algorithm, the training result should be nearly the same as that on
GPU. As can be seen in Fig. 20, the two curves are really close to each other. We also test the trained model on
the test dataset. The test accuracy is 65.22% running on GPU and 64.82% running on FPGA.
Most state-of-art works [18, 28] mainly implemented their design on Cifar-10 dataset whose input image is

really small (3× 32× 32) compared to real-world on-device learning scenarios. To verify that our accelerator with
the data reshaping approach can support larger networks with larger feature sizes, we test our design on AlexNet
and Vgg-16 for ImageNet whose input image parameters are 3 × 227 × 227 and 3 × 224 × 224 respectively.
The data reshaping approach enables our accelerator to support end-to-end training with the following

situations: (1) when the feature map size of a layer increases and the on-chip memory is not big enough to hold
all the feature maps of the layer, and (2) when the number of channels increases and the weights bufer cannot
hold all the weights of a layer. For AlexNet, its convolution kernel size ranges from 11ÃŮ11 to 1ÃŮ1 and feature
map size ranges from 227ÃŮ227 to 1ÃŮ1, which covers the above-mentioned situations. Besides, the stride of the
irst Conv layer of AlexNet is 4. Implementing Conv layers with diferent stride sizes are more complex than only
verifying the design on CNNs where the stride remains 1. Therefore, AlexNet is ideal to verify that our design
can support DNNs with a larger feature map size and larger weight density and can deal with diferent Conv
layers shapes. Fig. 21 (a) shows the throughput and latency of a batch for training the AlexNet model with batch
size ranging from 2 to 128. When the batch size is 128, the throughput reaches 34.52 GFLOPS. Because of weight
reuse, the weights transmission bottleneck is ameliorated when the batch size increases, so the throughput in
larger batch size is slightly higher than that for small batch size. However, unlike batch-level parallelism-based
designs [18] where the performance varies a lot under diferent batch sizes, the performance of our channel-level
parallelism-based design is less afected by the batch size. As shown in Fig. 21, the throughput when the batch
size is 2 is still above 32 GFLOPS.
We also test our design on Vgg-16 which has denser parameters, and the performance is shown in Fig. 21

(b). Due to the DRAM memory size limitation of ZCU102, the maximum batch size is 16. As illustrated in
Fig. 21, our design achieves higher throughput on Vgg-16 compared with AlexNet. It is because, for channel-level
parallelism, the number of input channels of the irst Conv layer is only 3, which is smaller than Tn, so the
computation resources are not fully utilized in this layer. This efect is also mentioned in Section 6.1. However,
such underutilization only happens in the irst Conv layer and is alleviated when the neural network becomes
deeper. Hence, in the deeper network, Vgg-16, we achieve higher throughput.

To verify that our design can support the BN layer which is a key component of typical CNN architectures, we
also test the proposed design on Vgg-16 with BN layers. The performance is shown in Fig. 21 (c). Apart from
the loss and activation, the immediate BN parameters also need to be stored in DRAM. Due to the memory size
limitation, the maximum batch size is 8. Unlike computation-intensive Conv layers, BN layers involve lots of data
transmission processes. Some complex operations like extracting a root also cost extra computation resources
and reduce the timing performance. Therefore, the overall throughput is a little less than that for Vgg-16 without
BN layers.

ACM Trans. Des. Autom. Electron. Syst.

26 • Tang and Hu, et al.

Table 8. Experimental Results on AlexNet and Vgg-16

Network AlexNet Vgg-16 without BN Vgg-16 with BN

DSP Utilization 1513 (60.0%) 1508 (59.8%) 1680 (66.7%)
DConv (DConv/Used DSPs) 1280 (84.6%) 1280 (84.9%) 1280 (76.2%)

BRAM Utillization 857 (94.0%) 787 (86.3%) 812 (89.0%)
BConv (BConv/Used BRAMs) 672 (78.4%) 672 (85.4%) 672 (82.8%)

Power (W) 7.736 7.712 8.208
Batch Size 128 16 8

Throughput (GFLOPS) 34.52 46.99 40.08
Eiciency (GFLOPS/W) 4.46 6.09 4.88

Table 8 also shows the resource utilization and energy eiciency of the FPGA for these networks. With the
same estimated DSPs and BRAMs for Conv layers (DConv and BConv), AlexNet requires more BRAMs than
Vgg-16. It is because, compared to Vgg-16, AlexNet has a less regular weights kernel shape (ranging from 11 × 11
to 1 × 1), so we add an extra bufer to fetch a tile of weights from the on-chip Weight bufer before the Conv
Kernel conducting MAC operations. Such optimization can release routing congestion caused by complex BRAM
addresses calculation and allocation in FP, BP, and WU processes. Apart from the extra bufer, a small fraction
of DSPs and BRAMs function for non-Conv layers. The accelerator also utilizes a few DSPs to calculate BRAM
addresses. Therefore, as mentioned in Section 5.3, the estimated boundary of DConv and BConv in realistic end-to-
end system design should be slightly smaller than the total DSPs and BRAMs numbers. From our experimental
results, assigning 80% of DSPs and 75% BRAMs should be enough.

As for the Vgg-16 with BN layers, extra computation resources are utilized to do complex operations such as
division, root extraction, etc. Therefore, Vgg-16 with BN layers costs more DSP resources compared with Vgg-16
without BN layers. Additional BRAMs are also utilized to bufer BN parameters for a batch.

In our end-to-end training validation, we utilize 1508 DSPs for the Vgg-16 model. The theoretical peak
performance with 1508 DSPs on the 32-bit loating-point accelerator is 1508

5 × 2 × 0.1 GHz= 60.3 GFLOPS, while
our attainable end-to-end test is 46.99 GFLOPS including pooling and ReLU operations.

6.4 Comparison with State-of-art Works

Comparisons of the best performance between our design and other state-of-art FPGA-based training accelerators
are shown in Table 9. In the table, "N/A" means that the metric is not provided, and "≈" means that the value is
obtained by approximate estimation. Since the platforms, the neural networks for training, and the data type are
diferent, it is extremely diicult to fairly compare between diferent training accelerators. However, our design
still shows desirable performance even under such circumstances.
To better illustrate the uniqueness of the proposed design, we also compare our work with the accelerators

that also adopted 32-bit loating-point. The comparisons are shown in Table 10 and Table 11. The design in [16]
was tested on LeNet-10 which is a really small network with the structure as Conv 1 ([M i ,N i ,Ri ,Ci ,K i , S i] =
[32, 3, 32, 32, 3, 1]) - Pooling - Conv 2 ([32, 32, 16, 16, 3, 1]) - Pooling - Conv 3 ([64, 32, 8, 8, 3, 1]) - Pooling - FC
([64, 1024, 1, 1, 1, 1]) - FC ([10, 64, 1, 1, 1, 1]). As explained in Section 6.3, the underutilization of computation
resources in the irst Conv layer reduces the overall throughput. Therefore, the performance of the proposed
design on this small network cannot be as superior as that in deeper networks like Vgg-16. However, our design
is a general architecture that can support both small networks and larger networks, while the accelerator in [16]
only targeted such small networks. It irst achieved feature-map level parallelism in a uniform computation

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 27

Table 9. Comparison of Diferent FPGA-based Training Accelerators

Accelerator Chow et al.
2017 [16]

DarkFPGA
2020 [18]

Seo et al.
2020 [29]

FeCafe
2020 [9]

Ours

Platform ZU19EG XCVU9P Stratix 10 MX Stratix 10 ZCU102
Technology 16nm 16nm 14nm 14nm 16nm
DSP Util. 1500 4202 1040 1796 1508

Freq. (MHz) 200 200 185 253 100
Power (W) 14.24 13.5 ≈20 N/A 7.712
Network LeNet-10 Vgg-like ResNet-20 AlexNet Vgg-16
Dataset CIFAR-10 CIFAR-10 CIFAR-10 ImageNet ImageNet

Data Type FP 32 Fixed 8 FP 16 FP 32 FP 32
Throughput 86.12

GFLOPS
1417
GOPS

≈180
GFLOPS

≈24
GFLOPS

46.99
GFLOPS

Energy Ei. 6.05
GFLOPS/W

104.96
GOPS/W

≈9
GFLOPS/W

N/A 6.09
GFLOPS/W

Nominal
Thro.(GOPS
× precision)

2755.84 11336 ≈2880 ≈768 1503.68

Nominal
Ei. (GOPS
× precision/W)

193.6 839.68 ≈144 N/A 194.88

engine, and then unrolled channel-level parallelism factors to improve utilization of computation resources. For
the memory access issues, the input and output features of each layer are all stored on the FPGA chip, which
restricts the work from extending to support the networks where the on-chip BRAMs are not large enough to
hold entire features of a Conv layer. However, larger networks like AlexNet and Vgg are commonly applied
in practical applications. Unlike [16], our work not only enables on-device training on larger CNN models
but also achieves higher throughput when the network becomes deeper. Besides, the number of operations
of LeNet-10 reported in [16] is 74.43 MFLOPs. However, according to total number o f traininд operations =

2× (3×
∑n

i=1M
i × N i × Ri ×Ci × K i × K i −M1 ×N 1 ×R1 ×C1 ×K1 ×K1), the actual number of operations that

we obtain is only 25.17 MFLOPs. In this formula, 2× is due to the FP 32 data type, and 3× is due to the fact that
each layer needs to conduct FP, BP, and WU except the 1st layer which only needs to conduct FP and WU.
The FeCafe [9] introduced a Cafe framework with OpenCL which can integrate FPGA to perform CNN

network training. It only provided DSP utilization and throughput which are shown in Table 11. Compared
to the FeCafe framework, our design utilized fewer computation resources but achieved higher throughput
implementing AlexNet.

The work in [29] also adopted both feature-map level parallelism and channel-level parallelism, similar to its
preliminary work in [28]. The best nominal energy eiciency reaches 144 (GOPS × precision) which is lower
than our best nominal energy eiciency which is 194.88 (GOPS × precision). As for the memory access issues,
the accelerator in [29] targeted devices equipped with high bandwidth memory (HBM2). Compared with DMA,
the HBM2 is superiorly advanced with 16 pseudo channels providing a high number of I/O data pins. However,
HBM2 is a new high-speed memory technology and is only integrated into a few modern FPGAs like Stratix
10 MX. Most FPGA-based edge devices still rely on DMA to communicate between the FPGA chip and of-chip

ACM Trans. Des. Autom. Electron. Syst.

28 • Tang and Hu, et al.

Table 10. Experimental Results on LeNet-10 Compared with Chow et al. [16]

Chow et al. [16] Ours

Platform ZU19EG ZCU102
Frequency (MHz) 200 100
DSP Utilization 1699 (76.2%) 1315 (52.2%)

BRAM Utillization 174 (17.7%) 340 (37.3%)
Power (W) 14.24 7.14
Throughput 86.12 GFLOPS 15.47 GFLOPS

Energy Eiciency 6.05 GFLOPS/W 2.17 GFLOPS/W

Table 11. Experimental Results on AlexNet Compared with FeCafe [9]

FeCafe [9] Ours

Platform Stratix 10 ZCU102
Frequency (MHz) 253 100
DSP Utilization 1796 (31.2%) 1513 (60.0%)

BRAM Utillization N/A 857 (94.0%)
Power (W) N/A 7.736
Throughput ≈24 GFLOPS 34.52 GFLOPS

Energy Eiciency N/A 4.46 GFLOPS/W

DRAM. Besides, [28] and [29] only tested their designs on the Cifar-10 dataset where the input image size is only
32 × 32 which is really small so that their on-chip BRAMs can easily hold P entire feature maps, where P is the
unrolling factors in the channel dimension. However, our design can support both small and large feature map
sizes.
DarkFPGA [18] placed DRAM data layout in the channel-height-width-batch (CHWB) pattern based on its

batch-level parallelism-based design. It achieves higher nominal energy eiciency because the 8-bit ixed points
can improve the energy eiciency and DSP eiciency out of proportion. The previous study has shown that if the
data precision is no more than 8-bit, two MACs can be calculated on one Xilinx DSP48, reducing the DSP usage by
half [15]. However, for 32-bit loating-point, 1 MAC operation takes up 5 DSPs in the Xilinx FPGA board. Besides,
XCVU9P is an extremely high-end cloud-level FPGA that has superior eiciency than commonly used edge FPGAs.
However, as mentioned in Section 2.3, the batch-level parallelism adopted by DarkFPGA only achieved high
throughput when the batch size is large. From their experiments, when the batch size is below 16, its throughput
is below 100 GOPS which is around 800 GOPS×precision after nominating, while our nominal throughput is
stably above 1000 GOPS×precision among diferent batch sizes. Besides, same with [28, 29], DarkFPGA also
implemented their design on Cifar-10 dataset with a relatively small feature map size.

7 CONCLUSION

In this paper, we design EF-train, an eicient DNN training accelerator enabling edge FPGAs to continuously
learn on the device, which makes it possible for current FPGA-based edge-level applications to achieve domain
adaption and personalization. We propose an FPGA-based CNN training accelerator with a uniied convolution
kernel to process FP, BP, and WU with full precision and a data reshaping approach to ensure continuous memory

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 29

access during end-to-end training processes. We implement end-to-end CNN training efectively for low-power
edge devices with restricted resources. The experimental results show that our design achieves 46.99 GFLOPS
and 6.09 GFLOPS/W in terms of throughput and energy eiciency, respectively.

REFERENCES

[1] Burger, A., Qian, C., Schiele, G., and Helms, D. (2020). An embedded cnn implementation for on-device ecg analysis. In 2020 IEEE

International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pages 1ś6. IEEE.
[2] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., and Shelhamer, E. (2014). cudnn: Eicient primitives for deep
learning. arXiv preprint arXiv:1410.0759.
[3] Choi, S., Sim, J., Kang, M., and Kim, L.-S. (2018). Trainware: A memory optimized weight update architecture for on-device convolutional
neural network training. In Proceedings of the International Symposium on Low Power Electronics and Design, pages 1ś6.
[4] Fox, S., Faraone, J., Boland, D., Vissers, K., and Leong, P. H. (2019). Training deep neural networks in low-precision with high accuracy
using fpgas. In 2019 International Conference on Field-Programmable Technology (ICFPT), pages 1ś9. IEEE.
[5] Granter, S. R., Beck, A. H., and Papke Jr, D. J. (2017). Alphago, deep learning, and the future of the human microscopist. Archives of
pathology & laboratory medicine, 141:619ś621.
[6] Guan, Y., Liang, H., Xu, N., Wang, W., Shi, S., Chen, X., Sun, G., Zhang, W., and Cong, J. (2017). Fp-dnn: An automated framework
for mapping deep neural networks onto fpgas with rtl-hls hybrid templates. In 2017 IEEE 25th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 152ś159. IEEE.
[7] Guo, K., Sui, L., Qiu, J., Yu, J., Wang, J., Yao, S., Han, S., Wang, Y., and Yang, H. (2017). Angel-eye: A complete design low for mapping cnn
onto embedded fpga. IEEE transactions on computer-aided design of integrated circuits and systems, 37(1):35ś47.
[8] Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K., Hwu, W.-m., and Chen, D. (2019). Fpga/dnn co-design: An eicient design
methodology for 1ot intelligence on the edge. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1ś6. IEEE.
[9] He, K., Liu, B., Zhang, Y., Ling, A., and Gu, D. (2020). Fecafe: Fpga-enabled cafe with opencl for deep learning training and inference on
intel stratix 10. In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 314ś314.

[10] Jiang, W., Sha, E. H.-M., Zhang, X., Yang, L., Zhuge, Q., Shi, Y., and Hu, J. (2019). Achieving super-linear speedup across multi-fpga for
real-time dnn inference. ACM Transactions on Embedded Computing Systems (TECS), 18(5s):1ś231.

[11] Kang, D., Kang, D., and Ha, S. (2021). Multi-bank on-chip memory management techniques for cnn accelerators. IEEE Transactions on

Computers.
[12] Kao, S.-C., Jeong, G., and Krishna, T. (2020). Confuciux: Autonomous hardware resource assignment for dnn accelerators using
reinforcement learning. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 622ś636. IEEE.
[13] Khan, M. A. A. H., Roy, N., and Misra, A. (2018). Scaling human activity recognition via deep learning-based domain adaptation. In 2018

IEEE international conference on pervasive computing and communications (PerCom), pages 1ś9. IEEE.
[14] Lammie, C., Olsen, A., Carrick, T., and Azghadi, M. R. (2019). Low-power and high-speed deep fpga inference engines for weed
classiication at the edge. IEEE Access, 7:51171ś51184.

[15] Li, Y., Hao, C., Zhang, X., Liu, X., Chen, Y., Xiong, J., Hwu, W.-m., and Chen, D. (2020). Aedd: Eicient diferentiable dnn architecture
and implementation co-search for embedded ai solutions. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1ś6. IEEE.
[16] Liu, Z., Dou, Y., Jiang, J., Wang, Q., and Chow, P. (2017). An fpga-based processor for training convolutional neural networks. In 2017

International Conference on Field Programmable Technology (ICFPT), pages 207ś210. IEEE.
[17] Lu, J., Lin, J., and Wang, Z. (2020). A reconigurable dnn training accelerator on fpga. In 2020 IEEE Workshop on Signal Processing Systems

(SiPS), pages 1ś6. IEEE.
[18] Luo, C., Sit, M.-K., Fan, H., Liu, S., Luk, W., and Guo, C. (2020). Towards eicient deep neural network training by fpga-based batch-level
parallelism. Journal of Semiconductors, 41(2):022403.
[19] Mendonça, F., Mostafa, S. S., Morgado-Dias, F., and Ravelo-García, A. G. (2021). A method based on cardiopulmonary coupling analysis
for sleep quality assessment with fpga implementation. Artiicial Intelligence in Medicine, 112:102019.
[20] Nakahara, H., Sada, Y., Shimoda, M., Sayama, K., Jinguji, A., and Sato, S. (2019). Fpga-based training accelerator utilizing sparseness of
convolutional neural network. In 2019 29th International Conference on Field Programmable Logic and Applications (FPL), pages 180ś186.
IEEE.

[OpenVINO] OpenVINO. Optimization guide. https://docs.openvino.ai/2020.2/_docs_optimization_guide_dldt_optimization_guide.html.
[22] Putra, R. V. W., Hanif, M. A., and Shaique, M. (2020). Drmap: A generic dram data mapping policy for energy-eicient processing of
convolutional neural networks. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1ś6. IEEE.
[23] Putra, R. V. W., Hanif, M. A., and Shaique, M. (2021). Romanet: Fine-grained reuse-driven of-chip memory access management and
data organization for deep neural network accelerators. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(4):702ś715.
[24] Rana, A. and Kim, K. K. (2020). Comparison of artiicial neural networks for low-power ecg-classiication system. Journal of Sensor
Science and Technology, 29(1):19ś26.

ACM Trans. Des. Autom. Electron. Syst.

30 • Tang and Hu, et al.

[25] Sanaullah, A., Yang, C., Alexeev, Y., Yoshii, K., and Herbordt, M. C. (2018). Real-time data analysis for medical diagnosis using
fpga-accelerated neural networks. BMC bioinformatics, 19(18):19ś31.
[26] Sohrabizadeh, A., Wang, J., and Cong, J. (2020). End-to-end optimization of deep learning applications. In Proceedings of the 2020

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 133ś139.
[27] Tao, Y., Ma, R., Shyu, M.-L., and Chen, S.-C. (2020). Challenges in energy-eicient deep neural network training with fpga. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 400ś401.
[28] Venkataramanaiah, S. K., Ma, Y., Yin, S., Nurvithadhi, E., Dasu, A., Cao, Y., and Seo, J.-s. (2019). Automatic compiler based fpga accelerator
for cnn training. In 2019 29th International Conference on Field Programmable Logic and Applications (FPL), pages 166ś172. IEEE.

[29] Venkataramanaiah, S. K., Suh, H.-S., Yin, S., Nurvitadhi, E., Dasu, A., Cao, Y., and Seo, J.-s. (2020). Fpga-based low-batch training
accelerator for modern cnns featuring high bandwidth memory. In Proceedings of the 39th International Conference on Computer-Aided

Design, pages 1ś8.
[30] Wang, T., Geng, T., Li, A., Jin, X., and Herbordt, M. (2020). Fpdeep: Scalable acceleration of cnn training on deeply-pipelined fpga clusters.
IEEE Transactions on Computers, 69(8):1143ś1158.
[31] Wei, X., Liang, Y., and Cong, J. (2019). Overcoming data transfer bottlenecks in fpga-based dnn accelerators via layer conscious memory
management. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1ś6. IEEE.
[32] Xilinx. Corazon ai. http://www.xilinx.com/products/boards-and-kits/1-1bua5s3.html.
[33] Xilinx. Pony.ai sensor fusion using multiple xilinx devices. https://www.xilinx.com/applications/automotive/automated-driving.html.
[34] Xilinx. Zf proai gen 3 using xilinx zynq ultrascale+ mpsoc. https://www.xilinx.com/applications/automotive/automated-driving.html.
[35] Xu, M., Qian, F., Mei, Q., Huang, K., and Liu, X. (2018). Deeptype: On-device deep learning for input personalization service with
minimal privacy concern. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2:1ś26.

[36] Yang, J., Zou, H., Cao, S., Chen, Z., and Xie, L. (2020). Mobileda: Toward edge-domain adaptation. IEEE Internet of Things Journal,
7(8):6909ś6918.
[37] Zeng, T., Semiari, O., Mozafari, M., Chen, M., Saad, W., and Bennis, M. (2020). Federated learning in the sky: Joint power allocation and
scheduling with uav swarms. In ICC 2020-2020 IEEE International Conference on Communications (ICC), pages 1ś6. IEEE.
[38] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., and Cong, J. (2015). Optimizing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA international symposium on ield-programmable gate arrays, pages 161ś170.
[39] Zhang, C., Sun, G., Fang, Z., Zhou, P., Pan, P., and Cong, J. (2018a). Cafeine: Toward uniformed representation and acceleration for deep
convolutional neural networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(11):2072ś2085.
[40] Zhang, X., Hao, C., Lu, H., Li, J., Li, Y., Fan, Y., Rupnow, K., Xiong, J., Huang, T., Shi, H., et al. (2019). Skynet: A champion model for
dac-sdc on low power object detection. arXiv preprint arXiv:1906.10327.
[41] Zhang, X., Wang, J., Zhu, C., Lin, Y., Xiong, J., Hwu, W.-m., and Chen, D. (2018b). Dnnbuilder: an automated tool for building high-
performance dnn hardware accelerators for fpgas. In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1ś8.
IEEE.

[42] Zhao,W., Fu, H., Luk,W., Yu, T., Wang, S., Feng, B., Ma, Y., and Yang, G. (2016). F-cnn: An fpga-based framework for training convolutional
neural networks. In 2016 IEEE 27Th international conference on application-speciic systems, architectures and processors (ASAP), pages 107ś114.
IEEE.

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 31

109 110

Tm
73

37
74

38

72

87

21
Tr

i

Tc
i

1 2 87 37 38 4443

3 4

9 10

5

1211

6

36

73 74

...
OUT DMA stream

DRAM:

1 2 87 37 38 4443 3 4

...

OFM DMA stream

...

repeat times

...
X

Y
Z

(a)

R
i

C
i

M
i

(b)

Burst length=Tc
i

Burst length=Tc
i

(c)

FP/BP:

WU:

73 74 ...

72 ...

...

no repeat

Fig. 6. Data layout of output features before reshaping. (a) Data stored in DRAM, (b) Data transmited via the OUT DMA

channel in FP/BP, (c) Data transmited via the OFM DMA channel in WU.

DRAM:

X

Y

(a)

R
j
_in

C
j
_in

N
j

(b)

Burst length=Tc
j
_in

(c)

Tn

111110

144

73
109
74 75

37 3938 40

2

7

1

13

8

3

9

14 15

4

10

16

36

Tcj_in

Tr
j
_in

1 2 73 8 9 1413 15 3837 39 ...

2 3 384 39 40 ...

IFM DMA stream

109 ...

...110

...

repeat times

1 2 73 8 9 1413 15 3837 39 ... 2 3 4

repeat times

...

IFM DMA stream

109 ...110 111 112...

36

110 111 ...

Burst length=Tc
j
_in

FP/BP:

WU:

Z

...

...

123

...

...

144 ...
72

108 108...

Fig. 7. Data layout of input features before reshaping. (a) Data stored in DRAM, (b) Data transmited via the IFM DMA

channel in FP/BP, (c) Data transmited via the IFM DMA channel in WU.

3

3

TnK
i

19
13

7
1

20
14

8
2

21
15

9
3

22
16

10
4

23
17

11
5

24
18

12
6

Tm

DRAM:

WEI DMA stream

repeat times

1 7 9 54 6 1110 12

...
OUT DMA stream

1 2 87 13 2019

WEI DMA stream

repeat times

3 4 109

N
i'
= M

i

M
i'
= N

i

(a)

2 8

Burst length=Tn

1 7 9 54 6 1110 12

...

2 8

(b)

(d)

14

...

Burst length=Tm

(c)

Burst length=Tn

FP:

BP: WU:

...

no repeat

...

Fig. 8. Data layout of weights before reshaping. (a) Weights stored in DRAM, (b) Weights transmited via the WEI DMA

channel in FP, (c) Weights transmited via the WEI DMA channel in BP, (d) Weights transmited via the OUT DMA channel

in WU.

ACM Trans. Des. Autom. Electron. Syst.

32 • Tang and Hu, et al.

4 8

Tm
3

2
7

6

142

2925

51
Tr

i

Tc
i

1 2 43 5 6 87

10
9

14
13

33 37

17

4541

21

141

25 26

...
OUT DMA stream

DRAM:

1 2 65 25 26 3029 9 10

...

OFM DMA stream

...

repeat times

...
X

Y
Z

(a)

R
i

C
i

M
i

(b)

Burst length=M
i×Tc

i

Burst length=Tm

(c)

FP/BP:

WU:

3 4 ...

142 ...

...

no repeat

Fig. 9. Data layout of output features with the BHWC memory allocation and feature reuse. (a) Data stored in DRAM, (b)

Data transmited via the OUT DMA channel in FP/BP, (c) Data transmited via the OFM DMA channel in WU.

DRAM:

X

Y

(a)

R
j
_in

C
j
_in

N
j

(b)

Burst length=N
j×Tc

j
_in

(c)

Tn

128

144

16
3

4
7 1511

2 106 14

5

25

1

49

29

9

33

53 57

13

37

61

141

Tcj_in

Tr
j
_in

1 2 43 5 6 87 9 1110 25 ...

5 6 97 10 11 12

IFM DMA stream

36 ...

...

no repeat

1 2 53 6 7 109 11 ... 57 58 59 61

repeat times

...

IFM DMA stream

4 8 12 ...

Burst length=Tn

FP/BP:

WU:

Z

60

144 ...
142

143

143...

49

8 13 14 15 16 144

5 6 7 62 63

12

Fig. 10. Data layout of input features with the BHWC memory allocation and feature reuse. (a) Data stored in DRAM, (b)

Data transmited via the IFM DMA channel in FP/BP, (c) Data transmited via the IFM DMA channel in WU.

3

3

TnK
i

16
13

4
1

17
14

5
2

18
15

6
3

22
19

10
7

23
20

11
8

24
21

12
9

Tm

DRAM:

WEI DMA stream

repeat times

1 4 6 87 9 1110 12

...
OUT DMA stream

1 2 1354 1716

WEI DMA stream

repeat times

3 7 106

N
i'
= M

i

M
i'
= N

i

(a)

2 5

Burst length=M
i×N

i

1 4 6 87 9 1110 12

...

2 5

(b)

(d)

14

...

Burst length=Tm

(c)

Burst length=M
i×N

i

FP:

BP: WU:

...

no repeat

...

Fig. 11. Data layout of weights placed tile by tile based on inference-based data flow. (a) Weights stored in DRAM, (b)

Weights transmited via the WEI DMA channel in FP, (c) Weights transmited via the WEI DMA channel in BP, (d) Weights

transmited via the OUT DMA channel in WU.

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 33

OUT DMA stream

DRAM:

OFM DMA stream

X

Y

(a)

R
i

M
i

(b)

Burst length=M
i×R

i×C
i

Burst length=Tm×R
i×C

i

(c)

74

Tm
73

2 4

72

1513

31
Tri

Tc
i
=C

i

6
5

8
7

17 19

10
9 24

362321

12
11

71

25 2725 29 31 33 4835

37 39 41 43 45 47

49

1 2 43 24 4925 ...

73 ...

... 48... 72

74

1 2 43 24 7225 ...

...

49 ...

repeat times

48...

C
i FP/BP:

WU:

no repeat

...

Fig. 12. Data layout of output features ater reshaping. (a) Data stored in DRAM, (b) Data transmited via the OUT DMA

channel in FP/BP, (c) Data transmited via the OFM DMA channel in WU.

X

Y

(a)

R
j
_in

C
j
_in

N
j

(b)

Burst length=Tn×Tr
j
_in×Tc

j
_in

(c)

Tr
j
_in

IFM DMA stream

IFM DMA stream

Burst length=Tn×Tr
j
_in×Tc

j
_in

Tn

7876

73

74

75 77

108

1201072422

1193634

48

2 64

72

3

13

1

25

15

5

17

27 29

71

7 9 11

79

80

81

82

83

9512108

19

31

21 23

33 35

37 4745434139

84

96

Tcj_in=C
j
_in

1 2 43 36...

13 37

repeat times

73 108...

...10985 120...

...

36 48... ... 108

1413...

13 14 36

repeat times

73 ...

72... ...1 2 ...

DRAM： FP/BP:

WU:

13 14

...

...

Fig. 13. Data layout of input features ater reshaping. (a) Data stored in DRAM, (b) Data transmited via the IFM DMA

channel in FP/BP, (c) Data transmited via the IFM DMA channel in WU.

TnK
i

Tm

WEI/OUT DMA stream WEI DMA stream

N
i'
= M

i

M
i'
= N

i

(a)

Burst length=M
i×N

i

(b)

Burst length=Tm×Tn

(c)

15
13

3
1

16
14

4
2

19
17

7
5

20
18

8
6

23
21

11
9

24
22

12
10

DRAM：

12 43 5 6 11 12

...

1 2 3 1615

...5 6 87

13 144

FP/WU: BP:

...1
‘

Fig. 14. Data layout of weights ater reshaping. (a) Weights stored in DRAM, (b) Weights transmited via the WEI/OUT DMA

channel in FP/WU, (c) Weights transmited via the WEI DMA channel in BP.

ACM Trans. Des. Autom. Electron. Syst.

34 • Tang and Hu, et al.

1. for (to=0; to<M; to+=Tm){

2. for (row=0; row<R; row+=Tr){

3. for (ti=0; ti<N; ti+=Tn){

4. load IFM;

5. if (row==0){

6. load WEI;

7. }

8. on-chip convolution;

9. }

10. store OFM;

11. }

12. }

1. for (to=0; to<M; to+=Tm){

2. for(ti=0; ti<N; ti+=Tn){

3. for(row=0; row<R; row+=Tr){

4. load OFM;

5. load IFM;

6. on-chip convolution;

7. }

8. store WEI;

9. }

10. }

(a) (b)

1. for (to=0; to<M; to+=Tm){

2. load OFM;

3. for(ti=0; ti<N; ti+=Tn){

4. load IFM;

5. on-chip convolution;

7. store WEI;

8. }

9. }

(c)

Fig. 15. Pseudo-code of loop order scheduling between tiles. (a) Loop order for FP and BP, (b) Loop order for WU, (c) Loop

order for WU when Ri ≤ Tr i .

TnK
i

Tm

WEI/OUT DMA stream
(a)

Burst length=M
i×N

i

(b)

15
13

3
1

16
14

4
2

19
17

7
5

20
18

8
6

23
21

11
9

24
22

12
10

DRAM:

1 2 43 5 6 87 9 1110 12

...

27
25

28
26

31
29

32
30

35
33

36
34

M
i
_on

M
i
_on'

FP/WU:

WEI DMA stream

Burst length=Tm×M
i
_on'

(c)

1 4 ...5 8...

13 ... 16 ...17 20

25 ... 28 ...29 30

...

BP: M
i'
= N

i

N
i'
= M

i

Fig. 16. Data layout of weights ater weight reuse. (a) Weights stored in DRAM, (b) Weights transmited via the WEI/OUT

DMA channel in FP/WU, (c) Weights transmited via the WEI DMA channel in BP.

(a)

R
i

Burst length=M
i
_on×R

i×C
i

C
i

66

96

65

3634

64

3533

2 4

31

32

Image 1 Image 2

162

192

161

132130

160

131129
98 100

128

9997

Tm

M
i

M
i
_on

1 32

...

33 64... ... 97 160...

OUT DMA stream

(b)

FP/BP:DRAM:

Fig. 17. Data layout of output features in mini-batch training ater weight reuse. (a) Output features of two images in a

batch, (b) Output features transmited the via the OUT DMA channel in FP/BP.

ACM Trans. Des. Autom. Electron. Syst.

EF-Train: Enable Eficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or Personalization • 35

0

5

10

15

20

25

30

2 4 8 16 32 64 128

Without Weight Reuse

After Weight Reuse

La
te

n
cy

 p
e

r
b

a
tc

h
 (

s)

Batch size

Fig. 18. Experimental Results of The Data Reshaping Approach without Weight Reuse and ater Weight Reuse

0 2000000 4000000 6000000 8000000 10000000

FP

BP

WU

Latency (ns)

Tr
a

in
in

g
 P

h
a

se

MAC

Others

Fig. 19. Latency breakdown of CIFAR-10 ’1X’ CNN for FP, BP and WU when the batch size is 128.

Fig. 20. The loss curves during the training phase.

ACM Trans. Des. Autom. Electron. Syst.

36 • Tang and Hu, et al.

0

5

10

15

20

25

31.5

32

32.5

33

33.5

34

34.5

35

2 4 8 16 32 64 128

Latency

Throughput

T
h

ro
u

g
h

p
u

t
(G

F
LO

P
S

)

La
te

n
cy

 p
e

r
b

a
tc

h
 (

s)

Batch size
(a)

(b) (c)

0

5

10

15

20

25

30

35

46.2

46.3

46.4

46.5

46.6

46.7

46.8

46.9

47

47.1

2 4 8 16

Latency

Throughput

T
h

ro
u

g
h

p
u

t
(G

F
LO

P
S

)

La
te

n
cy

 p
e

r
b

a
tc

h
 (

s)

Batch size

0

5

10

15

20

39.6

39.7

39.8

39.9

40

40.1

40.2

2 4 8

Latency

Throughput

T
h

ro
u

g
h

p
u

t
(G

F
LO

P
S

)

La
te

n
cy

 p
e

r
b

a
tc

h
 (

s)

Batch size

Fig. 21. Experimental Results Training Diferent CNNs. (a) Throughput and Latency of AlexNet, (b) Throughput and Latency

of Vgg-16 without BN layers, (c) Throughput and Latency of Vgg-16 with BN layers

ACM Trans. Des. Autom. Electron. Syst.

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 CNN Training
	2.2 Related Works
	2.3 Motivations of The Proposed Design

	3 FPGA-based CNN Training Accelerator
	3.1 The Architecture of The Training Accelerator
	3.2 The Forward and Backward Propagation of A Convolutional Layer
	3.3 The Weight Update of A Convolutional Layer
	3.4 The Forward and Backward Propagation of A Pooling Layer
	3.5 The Forward Propagation of A BN Layer
	3.6 The Backward Propagation of A BN Layer

	4 Data Reshaping Approach
	4.1 Analysis on Discontinuous Memory Access
	4.2 Optimizing Discontinuous Memory Access
	4.3 Weight Reuse in Mini-batch Training

	5 Performance and Resource Model
	5.1 Performance Model
	5.2 Resource Model
	5.3 Computation and Memory Resources Scheduling Tool

	6 Experiments
	6.1 Effectiveness of The Data Reshaping Approach
	6.2 Accuracy of The Performance Model
	6.3 CNN Training Performance
	6.4 Comparison with State-of-art Works

	7 Conclusion
	References

