Algorithm-Hardware Co-design for
BQSR Acceleration in Genome Analysis ToolKit

Michael Lo*, Zhenman Fang', Jie Wang*, Peipei Zhou*, Mau-Chung Frank Chang* and Jason Cong*
*University of California, Los Angeles, USA
milo168 @ucla.edu, {jiewang, memoryzpp} @cs.ucla.edu, mfchang@ee.ucla.edu, cong@cs.ucla.edu
tSimon Fraser University, Burnaby, BC, Canada; zhenman@sfu.ca

Abstract—Genome sequencing is one of the key applications in
healthcare and has a great potential to realize precision medicine
and personalized healthcare. However, its computing process is
very time consuming. Even pre-processing the raw sequence data
of a whole genome for a single person to the analysis ready data
can take several days on a single-core CPU.

In this paper, we propose to accelerate the performance of the
widely used Genome Analysis ToolKit (GATK) using FPGAs.
More specifically, we focus on the algorithm and hardware co-
design for the Base Quality Score Re-calibration (BQSR) step
in GATK, which is an important and time-consuming step to
correct systematic errors made by a sequencing machine. Prior
studies did not consider hardware acceleration for BQSR because
it requires a large amount of memory with random access and has
a lot of control flow. To address these challenges, we first adapt
the algorithm to resolve the random memory access conflicts to
achieve a fully pipelined accelerator design and reduce its dataset
size. Second, we leverage the newly introduced large-capacity
UltraRAM (URAM) in Xilinx UltraScale+ FPGAs to buffer
BQSR’s large dataset on chip, and further optimize its operating
frequency. Finally, we also explore the coarse-grained pipeline
and parallelism to improve the overall performance of the BQSR
accelerator. Compared to the latest software implementation of
BQSR on GATK 4.1, running on single-thread and 56-thread
CPUs (14nm Xeon E5-2680 v4), our FPGA accelerator running
on Xilinx 16nm UltraScale+ VCU1525 board achieves up to 40.7x
and 8.5x speedups, respectively.

I. INTRODUCTION

Genome sequencing is one of the most important applica-
tions and has a great potential to reshape future healthcare
systems. By sequencing a patient’s genome and analyzing
this genome against a reference genome, clinical professionals
may precisely identify the patient’s health issue and accurately
prescribe corresponding medicine for treatment [1]. In the past
decade, the cost to sequence a whole human genome has
dramatically decreased, much faster than Moore’s law. Two
decades ago, it cost about $1,000,000 to sequence a human
genome; now the cost is at the level of $1,000 per genome [2],
affordable for health insurance providers and patients.

However, the high computing cost to analyze the genomes
has become one of the major obstacles in the clinical adoption
of genome sequencing. As shown in Figure 1, in genome se-
quencing, the first computing stage is the data pre-processing
that transforms the raw sequence data, called short reads,
to analysis-ready genome reads for the downstream variant
discovery stage. Those short reads coming from a single
run of the sequencer are considered as a read group. The

Burrows-Wheeler Aligner (BWA-MEM)

Prior work on hardware acceleration of Smith-
Waterman and SMEM algorithms [9-18]

}

mark duplicates ~

BOSR: Base Quality
Score Recalibration

Prior work on hardware acceleration of genome
data compression across stages [15, 23, 24]

/

~ Genome Analysis ToolKit v4 (GATK4)

No prior work on hardware acceleration of
mark duplicates and BQSR steps yet

Prior work on hardware acceleration of pair
hidden Markov model algorithm [15, 19-22]

variant discovery

Fig. 1. Overview of the genome sequencing computation pipeline.

variant discovery stage is where the genome variants are
discovered, allowing for individually specific suggestions of
potential medicine and treatment [3]. In next-generation se-
quencing technology (NGS) [4], each short read is a small
piece of nucleobases (usually around 50 to 400 base pairs,
i.e., nucleobases), and a whole sequenced genome for a single
person usually includes 3 billion base pairs and hundreds of
millions of such short reads with high redundancy.

The data pre-processing stage further includes three major
steps [3]. The first step is map to reference (i.e., genome
alignment) that aligns short reads to a reference genome,
which is usually done using the widely used open-source
software package called BWA-MEM [5]. The second step
is mark duplicates that mark short reads that are likely to
come from the same genome fragments due to the artifactual
process in the sequencing machine. The third step is Base
Quality Score Recalibration (BQSR) that builds a statistical
model to adjust quality scores for each read base by correcting
systematic errors from the sequencing machine. The mark
duplicates and BQSR steps, together with the variant discovery
stage, are implemented in Broad Institute’s latest open-source
software package called Genome Analysis ToolKit version 4
(GATK4) [6]. GATK4 is implemented based on the in-memory
map-reduce computing framework Apache Spark [7] and is
widely used in the genome sequencing community.

According to Intel’s white paper on deploying GATK best

practices on Xeon CPUs [8], it took about 9.5 days to run
the data pre-processing and variant discovery stages for a
30x coverage whole human genome on a single-core CPU,
and 1.5 days on a 36-core CPU (6.3x speedup compared
to single-core CPU). This significantly limits the potential
clinical adoption of genome sequencing, especially for time
sensitive cases such as cancer treatment. To further improve
the computation performance of genome sequencing, prior
studies have developed hardware accelerators for the genome
alignment step [9]-[18], variant discovery step in GATK4 [15],
[19]-[22], and genome data compression [15], [23], [24] in
GATK4, by exploring abundant parallelism and customiz-
able computation pipeline in these steps. These studies have
shown great potential of hardware acceleration for genome
sequencing. For example, the FPGA acceleration of the Smith-
Waterman algorithm in the genome alignment step achieved
343.8x speedup over the single-core CPU implementation [9],
and the FPGA acceleration of the pair hidden Markov model
algorithm in the variant discovery step achieved 53x speedup
over the well-optimized single-core CPU implementation [20].

In this paper, we focus on the algorithm-hardware co-design
to accelerate the BQSR (Base Quality Score Recalibration)
step, which is an important and time-consuming step in
the latest GATK4 [6] software package. To the best of our
knowledge, there is no prior work on hardware acceleration
for the mark duplicates and BQSR steps yet, and we are the
first to accelerate the BQSR algorithm on FPGAs. We choose
to accelerate BQSR for two reasons: 1) BQSR is about 4x
more time consuming than the mark duplicate step [25]; and
2) compared to other steps, BQSR has some unique challenges
for hardware acceleration.

First, BQSR uses large covariate tables to characterize the
quality score of each read base, which have a total size of
around 8.7 MB. It is impractical to buffer such a large dataset
on conventional Block RAM (BRAM) of an FPGA. Second,
BQSR accesses these covariate tables in a random order, which
makes it very difficult to efficiently customize the computation
pipeline to achieve full pipeline with initiation interval (II) of
one. Third, BQSR has a lot of control flows in its algorithm.
As a result, this makes it more irregular and harder to
accelerate on GPUs. More details of the BQSR algorithm and
acceleration challenges are presented in Section II.

To tackle the above challenges, we propose algorithm and
hardware co-optimization for the BQSR accelerator design.
At the algorithm level, we first reduce the large size of
covariate tables by half through changing the data precision
of covariate table values from 64-bit to 32-bit; the average
accuracy loss is less than 0.008% and is negligible. Moreover,
we adapt the algorithm by buffering and merging potential
conflict accesses in a small cyclic queue before reading and
writing the covariate tables to resolve the conflicts of random
memory accesses during the accelerator pipeline design. At the
hardware design level, we leverage the newly introduced large-
capacity UltraRAM (URAM) in Xilinx UltraScale+ FPGAs,
which has about a 4x larger capacity than conventional BRAM,
to buffer BQSR’s large covariate tables on chip. To address

the low frequency issue caused by the long critical path that
the URAM blocks span, we pipeline off-chip data at multiple
checkpoints along the critical path and improve the operating
frequency of our accelerator design by 25%. Moreover, to
optimize the overall performance of the BQSR accelerator,
we fully pipeline the design of each computing engine and
explore the coarse-grained pipeline and parallelism between
computing engines. Finally, we reorganize the input data
layout to maximize the off-chip memory bandwidth utilization.

Our entire BQSR accelerator design is implemented in high-
level synthesis (HLS) C++ and built using Vivado HLS 2018.3.
It runs at 122MHz and utilizes 74% of the URAM resource,
which is the bottleneck resource. For the software baseline, we
run the latest GATK 4.1 package on a 28-core server with dual-
socket 14nm Xeon E5-2680 v4 CPUs. Our FPGA accelerator
running on Xilinx 16nm UltraScale+ VCU1525 board achieves
up to 40.7x and 8.5x speedups over the single-thread and 56-
thread versions, respectively.

II. BQSR ALGORITHM AND CHALLENGES
A. Base Quality Score Re-calibration (BQSR) Algorithm

Since today’s sequencing machines are error prone, they
also report a Phred quality score for each base in the sequenced
reads to characterize the confidence of the base accuracy. Such
quality scores affect the accuracy of downstream analysis, such
as the genome wide association study and precision medicine.
BQSR [26] aims to detect and correct patterns of systematic
biases of the short reads from the sequencing machine by
generating a model using these reported quality scores.

1) Covariates: To generate the quality score model, the
following four features (i.e., covariates) of each base in the
short reads are explored in BQSR. First, read group covariate
describes which group the read strand belongs to. Second,
quality score covariate characterizes the association of mis-
matches with each individual quality score. Third, sequence
context covariate characterizes the association of mismatches
with the sequencing context; for example, dinucleotide ‘AC’
often has much lower quality than ‘TG’. Fourth, cycle se-
quence covariate characterizes the association of mismatches
with machine cycles on which the sequencer is on.

2) Covariate Tables: Each covariate has its own table,
where each table entry includes a value pair {#occur, error}
with 128 bits: one is the number of occurrences the base has
appeared (#occur), which is a 64-bit integer in GATK4; and
the other is the accumulation of mismatch error values for the
base (error), which is a 64-bit double-precision floating point
in GATK4. The read group and quality score covariate tables
are 2 and 3 dimensional, respectively; while both the sequence
context and cycle sequence covariate tables are 4 dimensional.
The first dimension has 3 types of error events: 1) mismatch, if
the given base and reference base do not match; 2) insertion,
if an extra base was read when it should not be read, and
3) deletion, if a base was not read when it should have been.
The second dimension is the number of read groups. The third
dimension is the number of possible quality scores that range

from O to 93. The last dimension is a covariate’s specific size:
it is 1012 for context covariate and 1002 for cycle covariate.

3) Algorithm 1: This algorithm describes the core al-
gorithm of the BQSR step in GATK4 [6]. This takes
up to 98% of the execution time of BQSR and is
a good candidate for hardware acceleration. BQSR uses
a histogram-like algorithm and has two major func-
tions for each read: COMPUTE_COVARIATE_INDICES and
UPDATE_COVARIATE_TABLES.

Function COMPUTE_COVARIATE_ INDICES uses each
read’s bases, quality scores, and read group (RG) to generate
four groups of indices (idxRG, idxQual, idxCtx, and idxCyc)
that will be employed to update the four covariate histograms,
i.e., read group, quality score, sequence context, and cycle
sequence covariate tables. Each group of indices is a 2
dimension array: the first dimension is the type of error event,
and the second dimension is the base index inside the read.

1. Lines 2-4 in Algorithm 1 are used to compute the read
group covariate index idxRG. We only need to get the read
group number (RG) from the input genome to index the
second dimension of the table.

2. Lines 5-7 are used to compute the quality score covariate
index idxQual. We only need to get the mismatch/inser-
tion/deletion quality scores (BaseQ, InQ, DelQ) from the
input genome to index the third dimension of the table.

3. Lines 8-22 are used to compute the sequence context
covariate index idxCtx. We only need to compute the
mismatch and insertion/deletion context values ctxM and
ctxIndel to index the fourth dimension of the table. As
shown in lines 9-12 and lines 18-22, we only compute
the indices for a valid range of bases inside a read. We
also complement the base value for a negative read strand
(lines 13-15), e.g., changing ‘A’ to ‘T and ‘G’ to ‘C’,
etc. The CtxM and CtxIndel values are calculated through
the Context function (lines 16-17), which mainly involves
bit shift and mask operations for the bases and a constant
valued key mask (mismatchMask or indelMask).

4. Lines 23-35 are used to compute the cycle sequence covari-
ate index idxCyc. We only need to compute the mismatch
and insertion/deletion key values subKey, indelKey to index
the fourth dimension of the table. As shown in lines 24-26,
it calculates the machine cycle and inc step from the read
order factor (ROF). It then reverses them if it is a negative
strand (lines 27-29). By using the keyFromCycle func-
tion to generate a value through negation, addition, and shift
operations based on the cycle input, the code calculates the
subKey for each base in line 31. The indelKey is the same
as subKey for the valid range of bases (lines 32-33).

Function UPDATE_COVARIATE_TABLES updates the val-
ues of the four covariate tables. For each covariate table,
based on the valid base index and event type (lines 37-39
in Algorithm 1), it reads the corresponding multi-dimensional
indices idx[] to the table from the results generated by function
COMPUTE_COVARIATE_INDICES. For a valid idx[], the
function will update the value pair {#occur, error} of the

Algorithm 1 Pseudo code for software BQSR for 1 read

1: function COMPUTE_COVARIATE_INDICES

2 #1. Generate Indices for Read Group (RG) Covariates:
3 for each base do //base index: b; 3 types of errors

4 idxRG[3][b] + {RG,RG,RG}

5: #2. Generate Indices for Quality Covariates:

6.

7

8

for each base do
idxQual[3][b] < {BaseQ,InQ,DelQ}
: #3. Generate Indices for Context Covariates:
9: {leftClipIdx, rightClipldx} < GetClipldx(bases)
10: for each base do

11: if b < leftClipldx || > rightClipldx then

12: invalidate base[b]

13: for each base do

14: if read is negative strand then //len: # of bases
15: base[b] +— complement(base[len-b-1])

16: CtxM <« Context(mismatchMask,MaskSize,bases)
17: CtxIndel < Context(indelMask,MaskSize,bases)
18: for each base do

19: if !(leftClipldx > rightClipldx) then

20: idxCtx[3][b] < {ctxM,CtxIndel,CtxIndel}
21: else

22: idxCtx[3][b] {-1,-1,-1}

23: #4. Generate Indices for Cycle Covariates:

24: ROF <« (isReadPairs && isSecondOfPair) ? -1 : 1
25: cycle <— ROF //ROF: Read Order Factor

26: inc <— ROF

27: if read is negative strand then

28: cycle < len * ROF

29: inc < -1 * ROF

30: for each base do

31: subKey <— keyFromCycle(cycle)

32: //T1 and T2 are two constant thresholds

33: indelKey < (b < T1 || b > T2) ? -1 : subKey
34: idxCyc[3][b] + {subKey,indelKey,indelKey}
35: cycle += inc

36: function UPDATE_COVARIATE_TABLES

37: for each event type do

38: for cach valid base do

39: for each covariate do

40: if idx[] is valid then

41: updateTable(idx[],{#occur,error})

corresponding table entry by accumulating (reading-adding-
writing) the number of occurrences (#occur) and mismatch
(error) value of that base (lines 40-41 in Algorithm 1).

For more details about the BQSR algorithm, please refer to
Broad Institute’s documents on GATK4 [6] and BQSR [26].

B. BOSR Acceleration Challenges

1) Challenge 1: Large Dataset: Table 1 summarizes the
storage requirements of the four major covariate tables (in
function UPDATE_COVARIATE_TABLES) and their corre-
sponding table indices used in BQSR if it is implemented on
hardware. Their element size, number of elements, and total
size is included. This is assuming that we accelerate one read
group at a time (accelerating K read groups at a time will
increase the covariate table sizes by K times) and there is at
most 1,000 bases per read (long enough for next-generation
sequencing). To efficiently accelerate BQSR, a minimum on-
chip storage of 8.7MB is required, but this amount is very
difficult to fit onto conventional BRAMs of an FPGA. For

TABLE I. MAJOR STORAGE REQUIREMENTS FOR HARDWARE

ACCELERATION
Name Element Size | Num of Elements | Total Size
4#2-D Table Indices 32-bits 4x3x1000 46.88KB
2-D Read Group Table 128-bits 3x1 48B
3-D Quality Table 128 bits 3x1x94 4.41KB
4-D Context Table 128 bits 3x1x94x1012 4.35MB
4-D Cycle Table 128 bits 3x1x94x1002 4.31MB

example, the Xilinx UltraScale+ VCU1525 board we use in
this paper—which has the same FPGA chip as the one used
in Amazon F1 instance [27]—has a total of 8.9MB BRAMs.
Typically, one cannot use more than 80% of the BRAM
resource in order to build the FPGA design. Moreover, it is
also very difficult to apply data tiling for the BQSR algorithm
due to the random memory access behavior explained below.

2) Challenge 2: Random Memory Access Conflict: When
updating (it is actually read-update-write, for simplicity, we
use update throughout the paper) the covariate tables, the
indices that come in have no particular order or pattern.
This random memory access behavior presents a considerable
challenge to accelerating the performance of the covariate table
updating stage. First, it leads to the synchronization issue when
two table updates index the same position: the second update
has to happen after the first one, as illustrated in Figure 2a).
Second, due to the large table sizes and limited on-chip cache
or buffer sizes, it is hard to avoid the synchronization by
simply replicating the covariate tables for parallel access.
Moreover, unless we can ensure two random updates use
different indices, as illustrated in Figure 2b), when we try
to pipeline the table update on an FPGA—assuming we can
buffer tables on chip—this random memory access conflict
issue prevents the high-throughput design with a pipeline
initiation interval (IT) of one.

Cycle 2 3 4 5 6 Cyclel 2 3 4 5 6
Update Idx a Update Idx a
Update Idx a Update Idx b

a) conflict access b) non-contlict access

Fig. 2. An example of random memory access conflict: a) both updates use
index a to the table, the second update has to happen after the first one; b)
two updates using different indices can be fully pipelined with II=1.

3) Challenge 3: Control Flow Divergence: When comput-
ing the sequence context and cycle sequence covariate indices,
many computations depend on input properties of the short
read, leading to control flow divergence. This divergence also
exists when updating the covariate tables. Therefore, it is
difficult for GPU acceleration. But it is natural for an FPGA
accelerator to fully pipeline the design with control flow.

III. BQSR ACCELERATOR DESIGN

A. Hardware-Friendly Algorithm Optimization

In order to efficiently accelerate BQSR on FPGA, we pro-
pose several algorithm-level optimizations. The pseudo code of
the hardware-friendly algorithm is presented in Algorithm 2,
with the changes from Algorithm 1 highlighted in red italic.

Algorithm 2 Pseudo code for hardware BQSR for 1 read

1: function LOAD_INPUT

2 for each base do //pipeline II=1; base index: b
3 rawlnput[b] <— off-chip DRAM

4: function COMPUTE_COVARIATE_INDICES

5 for each base do //pipeline 11=1
6.
7
8

parselnput(rawInput[b])
{leftClipIdx, rightClipldx} < GetClipldx(bases)
: //Merge two loops (lines 10-15) in Algorithm 1
9: for each base do //pipeline 11=1

10: if read is negative strand then //len: # of bases
11: if len-b < leftClipldx || > rightClipIdx then
12: invalidate base[b]

13: else

14: base[b] <— complement(base[len-b-1])
15: else

16: if b < leftClipIdx || > rightClipldx then

17: invalidate base[b]

18: CtxM < Context(mismatchMask,MaskSize,bases)
19: CtxIndel + Context(indelMask,MaskSize,bases)
20: ROF < (isReadPairs && isSecondOfPair) ? -1 : 1
21: cycle <— ROF //ROF: Read Order Factor

22: inc < ROF

23: if read is negative strand then
24: cycle < len * ROF
25: inc < -1 * ROF

26: //Merge the four indices computing in Algorithm 1
27: for each base do //pipeline II1=1;

28: subKey <— keyFromCycle(cycle)

29: //T1 and T2 are two constant thresholds

30: indelKey <— (b < T1 || b > T2) ? -1 : subKey
31: for each covariate do /unrolled

32: for each event do /unrolled

33: if valid base then

34: idx[] + {RG,BaseQ,InQ,DelQ,CtxM,
35: CtxIndel,subKey,indelKey }
36: cycle += inc

37: function UPDATE_COVARIATE_TABLES

38: //Swap the loops in Algorithm 1

39: for each covariate do /unrolled for parallelism

40: for each event do /unrolled for parallelism

41: for each valid base do /pipeline 1I=1;

42: //Buffer and partially merge table updates
43: //in queue[Q] to avoid memory conflicts
44: found <— Find&Merge(queue[Q],idx[])
45: if queue[b%Q)] is valid then

46: updateTable(queue[b%Q])

47: invalidate queue[b%Q]

438: if !found then

49: queue[b%Q] «+ {idx[],#occur,error}

1. Function LOAD_INPUT is added in Algorithm 2 lines 1-3,
which is used to load raw input genome data from off-chip
DRAM to on-chip URAM.

2. We merge multiple loops into one whenever possible so that
they can be accelerated in a single pipeline and executed
concurrently on hardware. For example, we merge two
loops in Algorithm 1 (lines 10-15) into one in Algorithm 2
(lines 8-17). Then we combine the four covariate indices
computing loops into one in Algorithm 2 (lines 27-37).

3. To reduce the covariate table sizes, we change the type of
the table value #occur (number of occurrences) from 64-bit

| Datum queue[Q]; //queue to buffer and merge table updates

)

2
3

16

18

L) L) LY L) W L

U

Datum struct holds table entry {idx[], #occur, error}

//Iterate each valid base: from lines 42-50 in Algorithm 2
4 for(int b = 0; b < READ_LENGTH+Q; b++) {

}

#pragma HLS pipeline II=1
#pragma HLS dependence variable=table inter true
distance=Q

//Get info of current table entry to update
Datum current = getTableEntryInfo (covariate, event, b);

//Find if current entry is in queue, 1if yes, merge the
partial results to the found entry in queue

bool found = false;

MERGE: for(int g = 0; g < Q; g++){ //Unrolled by HLS

if (current.index == queue[q].index) {
queue [g] .numOccurance += 1;
//type of partial mismatchError in queue is int

queue [g] .mismatchError += current.mismatchError;
found = true;

}

//Update actual covariate tables using the queue entry
indexed by b%Q (if valid), then free this entry.
This queue delays the conflict access (index b+Q
vs b) to covariate table by Q iterations
if (queue [b%Q] .index >=0) {
updateTable (covariateTables, queue [b%Q]) ;
queue [b%Q] .index = -1;

}

//1f current entry is not in queue, insert it into
queue at the position indexed by b%Q

if (found == false) {
queue [b%Q] .index = current.index;
queue [b%Q] .numOccurance = 1;
queue [b%Q] .mismatchError = current.mismatchError;

Listing 1. Major code to fully pipeline the covariate table updating (lines
42-50 in Algorithm 2) by buffering and partially merging potential conflict
accesses in a small cyclic queue.

integer to 32-bit integer as there is at most 3 billion bases in
a human genome. We also alter the type of the table value
error (accumulated mismatch error) from a 64-bit double to
a 32-bit single floating point, with an average accuracy loss
less than 0.008%. As a result, the table sizes are reduced
by half to about 4.3MB.

The nested loops in the covariate table update have been
swapped, as shown in Algorithm 2 (lines 39-42), enabling it
to efficiently pipeline the base loop (line 42) and parallelize
the outer loops (lines 40-41).

Last and most importantly, to resolve the random memory
access conflict issue, we add a small cyclic queue of size
Q to buffer and partially merge potential conflicts before
updating the covariate tables, as shown in Algorithm 2 lines
43-50. A more thorough code is shown in Listing 1. As
shown in lines 11-20 (MERGE loop), for the current table
entry associated with base b, the algorithm first checks if the
table index is already in the merge queue. If yes, it partially
accumulates the results to the found entry in the queue.
Otherwise, it inserts this table entry into the merge queue
using the cyclic index b%Q (lines 28-33). The essential
part is in lines 22-26: Instead of updating the covariate
table directly using the current table entry which might lead
to access conflict with a prior update (due to the random

PEK]

Initialize Tables PE2]

(Happens Once) » Processing Element 1 (PE 1): Compute Per Read Group|
Load Input

Compute Compute | | Compute

i | Indices 1 Indices 2 Indices M |

Accumulate Tables - B ‘ ,,,,,,,,,,,,,,,,,,,,,,,,, :

(Happens Once) | Update Update | Update ;

U i | Tables 1 Tables 2 Tables N | !

K=4, M=4,N=10 in our design

Fig. 3. Overview architecture of the BQSR accelerator.

access behavior), now we use the queue entry indexed by
b%Q to update the covariate table. Since every entry in the
queue is different, it is guaranteed that there will be no
conflict access within Q iterations of the base loop (line 4).

B. BOSR Accelerator Design and Optimization

Based on the optimized algorithm, we design and implement
a parallel and fully pipelined BQSR accelerator on FPGA
in Vivado HLS C++. We leverage the large-capacity URAM
resource to buffer the large covariate tables on-chip and further
optimize its operating frequency. Moreover, we optimize the
merge queue design in hardware to resolve URAM access
conflict and thus achieve full pipeline with initiation interval
(IT) of one. Figure 3 gives an overview architecture of our
BQSR accelerator.

1. Initialize Tables. This beginning stage initializes covariate
tables on URAM to 0, as URAMs (unlike BRAMs) do not
automatically initialize themselves. It only executes once.

2. Load-Compute-Update Processing Element (PE). This is
the main component to implement Algorithm 2, and each
PE is designed to execute one read group, which essentially
removes the read group dimension needed for the covariate
tables and thus minimizes the on-chip storage requirement.
While the number of read groups can dynamically range
from 1 to any number in the software version, now they
can always be distributed to our PEs without the hardware
accelerators underutilized. Since we reduce the covariate
table sizes and have large-capacity URAMs, we create K
copies of covariate tables and K parallel PEs. Each PE im-
plements three computing engines—Load Input, Compute
Indices, and Update Tables—corresponding to the three
functions in Algorithm 2. We further explore coarse-grained
pipeline between these three stages by using a ping-pong
buffer and balance them by parallelizing Compute Indices
with M duplications and Update Tables with N duplications.
We present more details of these stages and corresponding
hardware optimizations below.

3. Accumulate Tables. This stage merges the K copies covari-
ate tables into a single copy and writes it back to off-chip
memory. It only executes once at the end of the program.

1) Load Input and Data Layout Re-organization: This stage
loads the raw input genome data from off-chip memory to on-
chip URAM and is fully pipelined with II=1. To maximize the

a) Original Data Layout

\H§M‘\%‘b?"%'b%€) \‘,,x“i;&%fo"& \x,x“i;fbﬁ’%fb%gj
||...||...||...|...
Field 1 Field 2 Field 3
b) New Data Layout
D N S
I I |...|] | |...|
Base 1 Base 2 Base 3

Fig. 4. Input read data layout re-organization to pack all data fields of one
base into a single consecutive chunk.

off-chip memory bandwidth, we pack off-chip data transfer
in 512-bit chunks. There are 11 data fields for each base.
Originally, for each field, data fields from multiple bases
are packed together into a single 512-bit chunk, shown in
Figure 4a). As a result, it needs multiple memory accesses
to grab all data fields of one base. To address this limitation,
we change the input data layout so that one 512-bit chunk
packs all the fields for a single base, as shown in Figure 4b).

2) Compute Indices: This stage computes all covariate table
indices. Shown in Algorithm 2, we have pipelined all loops in
function COMPUTE_COVARIATE_INDICES with II=1, and
we parallelize this engine for reads inside a read group.

3) Update Tables: As shown in Algorithm 2, we parallelize
the two outer loops (covariate and event loops in lines 40-
41) and fully pipeline the innermost base loop (line 42) with
II=1. Eliminating the random memory access conflicts when
updating the table is the biggest challenge to achieving II=1.
Based on the revised algorithm using a small cyclic merge
queue as presented in Listing 1, our hardware implementation
needs to provide 1) a shorter latency of the merge step in
the queue than that of a covariate table update, and 2) a large
enough queue size Q, so that before one covariate table update
using queue[b%Q] is completed, it will not cycle back to the
update using the queue element queue[(b+Q)%Q], which is
the same as queue[b%Q].

1. Shorter queue merge latency. In the MERGE loop shown in
lines 13-20 of Listing 1, it only accumulates a very small
number of potential conflict entries (<= the queue size Q)
in the queue. Therefore, it does not need all bits in a single
floating point to store the partially accumulated mismatch
error value. This gives us an opportunity to downgrade the
float type of the mismatch error value to an int type in
the MERGE loop, which has much faster latency for the
arithmetic operations (1 cycle in our design) compared to
the float operations [28]. To avoid the value overflow and
minimize the accuracy loss, we convert the 32-bit float to a
32-bit integer by multiplying 227 in the MERGE loop, then
we convert it back to the regular 32-bit float when updating
the covariate table in URAM (line 24 in Listing 1). The
average accuracy loss is less than 0.008%.

2. Queue size Q selection. To make sure the second covariate
table update will not cycle back to use the queue element

e e e e BB IR
Fig. 5. BQSR accelerator layout on Xilinx VCU1525 FPGA board: Yellow
diamonds represent URAMs used in the design, the thin limegreen lines
indicate BRAMS used, and the red line indicates the critical path.

queue[(b+Q)%Q] before the first covariate table update
using queue[b%Q] is completed, we need a queue size:
Q >= CovariateUpdateLatency/QueueMergeLatency
In our design, it takes 1 cycle for the MERGE loop so
QueueMergeLatency = 1. The latency of updating the
covariate table CovariateUpdateLatency (dominated by
the mismatch error value update) includes two parts: 1) the
integer to floating point conversion that requires 2 cycles,
and 2) the floating point accumulation in HLS that requires
16 cycles. Therefore CovariateUpdate Latency = 18 and
@ >= 18. On the other hand, the larger Q is, the longer
the critical path of the pipeline is (we fully pipeline the
base loop in line 4 of Listing 1). Therefore, we choose the
smallest queue size () = 18 in our design.

4) URAM Optimization for Higher Frequency: With data
reading and writing, timing issues usually arise in the critical
paths between the DRAM interface and the on-chip storage,
especially URAMs blocks. As shown in Figure 5, URAM
blocks span the whole FPGA chip (in fact, 3 dies in the Xilinx
UltraScale+ VCU1525 FPGA board in Figure 5). However, for
each iteration of the pipeline, updates on URAM covariate
tables need to be completed in 1 cycle to achieve II=I.
As a result, it lowers the overall accelerator frequency. To
address the frequency issue, we pipeline the data to multiple
checkpoints along the critical path using the open-source tool
Latte [29]. By increasing some latency to the data loading,
we improve the accelerator frequency by 25%. As presented
in Section IV-D, the increased latency in the Load Input stage
can be hidden in our coarse-grained pipeline design.

IV. RESULTS AND ANALYSIS

A. Experimental Setup

We run the latest version of the widely used GATK4.1 [6]
for the software baseline. This is developed on top of the in-
memory map-reduce computing framework Apache Spark. For
the CPU, we use a dual socket 14nm Xeon E5-2680 v4 CPU
server that has 28 cores and 72GB DRAM; each CPU core
also has 2 hyper-threads. For the software version, we increase
the number of threads from 1 to 2 to 4, and up to 56.

Our FPGA accelerator is designed using Xilinx Vivado HLS
2018.3. It supports up to 1000 bases per read, which is gen-
erally enough for short reads in next-generation sequencing;
it can be increased if necessary since the processing of each
base is fully pipelined and it does not add too much on-chip
storage. The FPGA platform we run on is Xilinx’s 16nm

TABLE II. GENOME DESCRIPTION AND ITS SINGLE-CORE RUN-TIME

Name Source | # of Reads | File Size | Time (s)
SRR2114965 [30] 42,388,871 57 GB 481.66
HCC1954 [31] 18,373,093 30 GB 245.15
NA12878 [32] 57,962,777 | 134 GB 985.18

Virtex UltraScale+ VCU1525 FPGA board, which has the
same FPGA chip as that in Amazon F1 instance [27]. On this
board, we can put 4 processing elements (PEs) and, inside
each PE, there is 1 Load Input engine, 4 Compute Indices
engines, and 10 Update Tables engines, as shown in Figure 3.
The accelerator runs at a frequency of 122MHz.

For input genomes, we select three random human genomes
from the 1,000 genome project database [33]. We also ran-
domly chop them into smaller segments with a different
number of short reads (18 million to 58 million short reads),
so that the single-thread software version of the BQSR step
can finish within 20 minutes. Table II summarizes the genome
(segment) name, its source, the number of short reads it
includes, its file size, and the execution time (in seconds) on
a single-core CPU.

B. Resource Utilization and Performance Upper Bound

We summarize the resource utilization of our current BQSR
accelerator design on the Xilinx VCU1525 FPGA board in
Table III. Note that Vivado HLS usually only allows designers
to use up to 70-80% of any FPGA resources; otherwise, the
build will fail. As shown in Table III, the performance of our
accelerator is limited by the number of URAM resource, where
it already occupies 74%. We cannot add any more processing
elements that require extra URAM blocks.

TABLE III. BQSR RESOURCE UTILIZATION ON FPGA

BRAM | DSP FF LUT | URAM
50% 4% 10% | 50% 74%

Between the URAM and BRAM usage, we buffer the large
covariate tables (dominating resource) and raw input genome
data onto URAM. And we buffer the covariate table indices
and the parsed covariate table value pairs {#occur,error}
for the current K (K=4) read groups that the accelerator is
processing onto BRAM.

C. Overall Speedup

Figure 6 presents the speedups of multi-thread CPU versions
and our FPGA accelerator version over the single-thread CPU
version. To make a fair comparison, for the CPU version, we
only measure the time it takes to do the index computations
and table updates, which are the same ones we measure for
the FPGA version. The execution time for the FPGA version
includes CPU to FPGA data transfer but does not include the
input data layout reorganization. Due to the random memory
access conflicts and large dataset, the CPU performance does
not scale linearly with the number of threads. Depending on
the input genome, the 56-thread CPU version only achieves
4.8x to 7x speedup. While our FPGA accelerator achieves 35x
to 40.7x speedup over the single-thead CPU version, and 5.5x
to 8.5x speedup over the 56-thread CPU version.

@SRR2114965 OHCCI1954 WNAI2878 40.7

Speedup over single-thread CPU

e am 710 [
1-thread 2-thread 4-thread 8-thread

16-thread 32-thread 56-thread FPGA
Fig. 6. Overall speedup comparison of FPGA and multi-thread CPU versions

We applied the double to float conversion to the software
version of BQSR as well, but found that there was little impact
on the CPU performance since the random memory access
behavior dominates its performance. The same algorithm op-
timization using a small cyclic queue to eliminate memory
access conflicts does not work well in the CPU version since
it requires the corresponding hardware customization as well.

D. Accelerator Efficiency Analysis

We further analyze the accelerator efficiency to demonstrate
that our accelerator design has been well optimized. First, as
presented in Algorithm 2, all the major loops in our HLS-
based accelerator have been fully pipelined with II=1. Second,
we analyze the workload balance between the Load Input,
Compute Indices, and Update Tables stages inside each PE,
where coarse-grained pipeline optimization has been applied
using ping-pong buffer. The execution latencies of these three
stages are summarized in Table IV under different read lengths
(number of bases). The dominating stages are the Compute
Indices and Update Tables stages (columns ‘Compute’ and
‘Update’). These are balanced between each other with 4
parallel copies of Compute Indices and 10 parallel copies of
Update Tables. The original Load Input stage (column ‘Load-
Original’) was short in execution latency, but lowered the clock
frequency. After the frequency optimization with Latte [29],
the latency of the new Load Input stage (column ‘Load-Latte’)
becomes 70%-85% of that of the Compute Indices and Update
Tables stages, which is still hidden by those two stages.

TABLE IV. LATENCY FOR Load Input, Compute Indices (4 copies), AND
Update Tables (10 copies) STAGES UNDER DIFFERENT READ LENGTHS

Read Length | Load-Original | Load-Latte | Compute | Update
50 121 207 251 270
100 209 328 451 470
150 302 534 651 670
250 482 902 1051 1070
500 937 1713 2051 2070
1000 1842 3338 4051 4070

E. Accuracy Analysis

Since we reduce the precision of the accumulated mismatch
error value in the covariate tables from the 64-bit double to
a 32-bit float and further convert the 32-bit float to a 32-bit
integer for the partial accumulation results in the small cyclic
merge queue, there is some accuracy loss for this data field.

TABLE V. HIGHEST AND AVERAGE ERROR RATE FOR THE ACCUMULATED
MISMATCH ERROR VALUE IN THE COVARIATE TABLES

Single-Precision Half-Precision
Genome Highest Average | Highest | Average
SRR2114965 | 0.0131% | 0.0078% | 97.16% | 37.18%
HCC1954 0.2247% | 0.0008% | 92.56% | 16.29%
NA12878 0.0231% | 0.0017% | 98.9% 42.32%

We profile the average and highest error rates for each input
genome, as shown in Table V. Depending on the input genome,
the highest error rate for a single table value is from 0.0131%
to 0.2247%, while the average error rate for all table values
is from 0.0008% to 0.0078%, which can be well tolerated.

To check whether we can save more on-chip storage re-
source, we also profile the average and highest error rates for
each input genome using 16-bit half-precision floating point
numbers. As shown in Table V, when using half-precision,
the average error rates are high and the highest error rates are
well over 90%. This is because there are not enough bits in
the exponent field of half-precision float and there are frequent
value overflows. Therefore, we choose to utilize the 32-bit
floating point in our design.

V. RELATED WORK

In addition to the genome sequencing acceleration work
mentioned in Section I, we further discuss two major cate-
gories of related work: 1) acceleration for parallel histogram
computation and 2) hardware acceleration leveraging URAM.

A. Acceleration for Parallel Histogram Computation

There are many prior studies that accelerate the histogram-
based applications on FPGA [34]-[38]. To solve the memory
conflict in the updates of histogram tables, these studies resort
to duplicating either the computation or memory resources.

Gautam [34] proposed an FPGA accelerator for calculating
the histogram using a map-reduce fashion. The frequency of
each input element is calculated in parallel and then reduced
by a shuffle network. However, the computation resource of
this architecture is proportional to the input and output size and
therefore it is not scalable for handling large-scale histogram
problems like the BQSR algorithm.

Maggiani et al. [35] exploited parallelism by duplicating the
histogram tables. The number of duplicated tables equals the
latency of the update operation. This will also cause scalability
issues as the storage requirements for the duplicated tables
could easily go beyond the on-chip limit when handling large
tables and complicated update operations with long latency. A
similar idea is explored in [36]-[38].

When accelerating the BQSR algorithm in GATK4.1, the
large size of histogram tables and long latency of floating
point table update make it impractical to simply duplicate the
computation or memory resources. Instead, in this work, we
introduce a novel small cyclic queue to buffer and quickly
merge potential conflicts to hide the histogram update latency.
The queue size is the same as the histogram update latency,
which is much smaller compared to the histogram table size.
Our design fully pipelines the processing element (PE) without

the need to replicate a large amount of computation or memory
resources. Only if there is enough computing and memory
resource will our fully-piplined PE duplicate (e.g., 4 copies on
the Xilinx VCU1525 FPGA board). Our architecture is highly
scalable in handling complicated and large-scale histogram-
based applications like BQSR.

B. Acceleration Leveraging UltraRAM

UltraRAM (URAM) is first introduced on Xilinx Ultra-
Scale+ devices which adds about 4x more on-chip mem-
ory [39]. The large volume of URAM enables designers to
buffer more data on-chip, saving off-chip communication and
improving the overall performance. It has been used by many
previous accelerator designs [40]-[43]. In this work, we use
URAM to buffer the histogram tables on-chip to enable fast
random access. The use of URAM often brings frequency
issues due to the long data wires. This issue can be alleviated
by either scattering the data and localizing them to each
PE [41], [43], or pipelining the data transfer onto multiple
checkpoints [29]. Since tiling is prohibited in BQSR due to
its random data access, we have chosen the second approach
that helps us increase the design frequency.

VI. CONCLUSION

In this paper, we presented the first algorithm and hardware
co-design to accelerate the Base Quality Score Re-calibration
(BQSR) algorithm in GATK4. This algorithm is an important
and time-consuming step to correct systematic errors of a
genome from a sequencing machine. To address BQSR’s
unique challenges of large covariate table size and random
meory access conflicts when updating the tables, we optimized
the algorithm by reducing its table size with a lower data
precision and resolving the memory access conflict with a
small cyclic queue that buffers and quickly merges potential
conflict accesses before updating the tables. At the hardware
design, we buffered the large tables on chip by leveraging
newly introduced URAMs, optimized its operating frequency,
and fully pipelined the accelerator design by implementing a
fast merge queue. Moreover, we also explored coarse-grained
pipeline and coarse-grained parallelism to achieve the optimal
performance of our BQSR accelerator. Compared to the single-
thread and 56-thread implementations running on the 14nm
dual socket Xeon E5-2680 v4 CPU server, our HLS-based
FPGA accelerator achieved up to 40.7x and 8.5x speedups on
Xilinx 16nm UltraScale+ VCU1525 board. We believe these
optimizations are not limited to the BQSR algorithm and can
be applied to other histogram-like algorithms.

ACKNOWLEDGEMENTS

We acknowledge the support from Center for Domain-
Specific Computing and its industrial partners, including
Huawei, Samsung, and VMWare; Natural Sciences and Engi-
neering Research Council of Canada (NSERC Discovery Grant
RGPIN-2019-04613 and DGECR-2019-00120); Simon Fraser
University New Faculty Start-up Grant; and Xilinx. We also
thank Brian Hill for earlier discussions, Marci Baun for editing
the paper, and Amazon for AWS credit donation.

[1]

[2

—

[3

[t

[4]

[6

=

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

G. S. Ginsburg and K. A. Phillips, “Precision medicine: From science
to value,” in Health Aff (Millwood), vol. 37, 2018, p. 694-701.
National Human Genome Research Institute, “The cost
of sequencing a human genome,” 2019. [Online]. Avail-
able: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-
Human-Genome-cost

Broad Institute, “Genome Analysis Toolkit (GATK) Best Practices,”
2019. [Online]. Available: https://software.broadinstitute.org/gatk/best-
practices/workflow?id=11145

J. M. Besser, H. A. Carleton, P. Gerner-Smidt, R. L. Lindsey, and
E. Trees, “Next-generation sequencing technologies and their application
to the study and control of bacterial infections,” in Clinical Microbiology
and Infection: Official Publication of the European Society of Clinical
Microbiology and Infectious Diseases, vol. 24, 2017, pp. 335-341.

H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM,” arXiv preprint arXiv:1303.3997, 2013.

Broad Institute, “Genome Analysis Toolkit (GATK) 4,” 2019. [Online].
Available: https://github.com/broadinstitute/gatk

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation (NSDI), 2012, pp. 2-2.

Intel, “Infrastructure for deploying GATK
best practices pipeline,” 2016. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/healthcare-

it/solutions/documents/deploying-gatk-best-practices-paper.html

Y.-T. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-throughput
acceleration engine for read alignment,” in 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 1EEE, 2015, pp. 199-202.

Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000 x acceleration on long read assembly,”
in ACM SIGPLAN Notices, vol. 53, no. 2. ACM, 2018, pp. 199-213.
J. Cong, L. Guo, P.-T. Huang, P. Wei, and T. Yu, “Smem++: A pipelined
and time-multiplexed smem seeding accelerator for genome sequencing,”
in 2018 28th International Conference on Field Programmable Logic
and Applications (FPL). 1EEE, 2018, pp. 210-2104.

L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
FPGA and GPU,” in 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 1EEE,
2019, pp. 127-135.

W. Tang, W. Wang, B. Duan, C. Zhang, G. Tan, P. Zhang, and N. Sun,
“Accelerating millions of short reads mapping on a heterogeneous archi-
tecture with FPGA accelerator,” in 2012 IEEE 20th International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2012, pp. 184-187.

J. Arram, K. H. Tsoi, W. Luk, and P. Jiang, “Reconfigurable acceleration
of short read mapping,” in 2013 IEEE 21st Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2013, pp. 210-217.

Intel, “Intel genomics kernel library,” 2019.
https://github.com/Inte]l-HLS/GKL

N. Ahmed, V.-M. Sima, E. Houtgast, K. Bertels, and Z. Al-Ars,
“Heterogeneous hardware/software acceleration of the BWA-MEM DNA
alignment algorithm,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1EEE, 2015, pp. 240-246.

Y. Yamaguchi, H. K. Tsoi, and W. Luk, “FPGA-based Smith-Waterman
algorithm: analysis and novel design,” in International Symposium on
Applied Reconfigurable Computing. Springer, 2011, pp. 181-192.
Y.-T. Chen, J. Cong, Z. Fang, J. Lei, and P. Wei, “When Apache
Spark meets FPGAs: A case study for next-generation DNA sequencing
acceleration,” in Proceedings of the 8th USENIX Conference on Hot
Topics in Cloud Computing, ser. HotCloud’16. Berkeley, CA, USA:
USENIX Association, 2016, pp. 64-70.

M. Ito and M. Ohara, “A power-efficient FPGA accelerator: Systolic
array with cache-coherent interface for Pair-HMM algorithm,” in 2016
IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS

XIX). IEEE, 2016, pp. 1-3.
S. Huang, G. J. Manikandan, A. Ramachandran, K. Rupnow, W.-m. W.

Hwu, and D. Chen, “Hardware acceleration of the Pair-HMM algorithm
for DNA variant calling,” in Proceedings of the 2017 ACM/SIGDA

[Online]. Available:

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

(36]

(371

(38]

[39]

[40]

International Symposium on Field-Programmable Gate Arrays (FPGA).
ACM, 2017, pp. 275-284.

J. Wang, X. Xie, and J. Cong, “Communication optimization on GPU:
A case study of sequence alignment algorithms,” in 2017 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS). 1EEE,
2017, pp. 72-81.

Intel, “Accelerating genomics research with
opencl and fpgas,” 2017. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/healthcare-

it/solutions/documents/genomics-research-with-opencl-and-fpgas-
paper.html

W. Qiao, J. Du, Z. Fang, M. Lo, M. F. Chang, and J. Cong, “High-
throughput lossless compression on tightly coupled CPU-FPGA plat-
forms,” in 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2018, pp.
37-44.

J. Cong, Z. Fang, M. Huang, L. Wang, and D. Wu, “CPU-FPGA
coscheduling for big data applications,” IEEE Design & Test, vol. 35,
no. 1, pp. 16-22, 2018.

P. Zhou, Z. Ruan, Z. Fang, M. Shand, D. Roazen, and J. Cong, “Doppio:
I/O-aware performance analysis, modeling and optimization for in-
memory computing framework,” in 2018 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), April 2018,

pp. 22-32.
Broad Institute, “Base quality score recalibration
methods and algorithms,” 2018. [Online]. Available:

https://software.broadinstitute.org/gatk/documentation/article?id=1108 1
Amazon, “Amazon EC2 F1 instance,” 2019. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

Xilinx, “Vivado design user guide,” p. 548, 2018. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_
3/ug902-vivado-high-level-synthesis.pdf

J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Latte: Locality aware
transformation for High-Level Synthesis,” in 20/8 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 1EEE, 2018, pp. 125-128.

N. Cai, T. B. Bigdeli, W. Kretzschmar, Y. Li, J. Liang, L. Song, J. Hu,
Q. Li, W. Jin, Z. Hu et al., “Sparse whole-genome sequencing identifies
two loci for major depressive disorder,” vol. 523, no. 7562. Nature
Publishing Group, 2015, p. 588.

A. F. Gazdar, V. Kurvari, A. Virmani, L. Gollahon, M. Sakaguchi,
M. Westerfield, D. Kodagoda, V. Stasny, H. T. Cunningham, I. I
Wistuba et al., “Characterization of paired tumor and non-tumor cell
lines established from patients with breast cancer”” JOHN WILEY &
SONS LTD, 1998.

Illumina, 2019. [Online]. Available:
https://support.illumina.com/downloads.html

IGSR: The International Genome Sample Resource,
“1000 genomes project data,” 2019. [Online]. Available:

https://www.internationalgenome.org/data

K. S. Gautam, “Parallel histogram calculation for FPGA: Histogram
calculation,” in 2016 IEEE 6th International Conference on Advanced
Computing (IACC). 1EEE, 2016, pp. 774-7717.

L. Maggiani, C. Salvadori, M. Petracca, P. Pagano, and R. Saletti,
“Reconfigurable architecture for computing histograms in real-time
tailored to FPGA-based smart camera,” in 20/4 IEEE 23rd International
Symposium on Industrial Electronics (ISIE). 1EEE, 2014, pp. 1042—
1046.

A. Shahbahrami, J. Y. Hur, B. Juurlink, and S. Wong, “FPGA implemen-
tation of parallel histogram computation,” in 2nd HiPEAC Workshop on
Reconfigurable Computing. Published, 2008, pp. 63-72.

J. H. Ahn, M. Erez, and W. J. Dally, “Scatter-add in data parallel
architectures,” in 11th International Symposium on High-Performance
Computer Architecture. 1EEE, 2005, pp. 132-142.

M. Hosseinabady and J. L. Nufiez-Ydafiez, “Pipelined streaming compu-
tation of histogram in FPGA OpenCL,” in PARCO, 2017, pp. 632-641.
Xilinx, “UltraRAM: Breakthrough embedded memory
integration on UltraScale+ devices,” 2019. [Online]. Available:
https://www.xilinx.com/support/documentation/white_papers/wp477-
ultraram.pdf

Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN: An
open framework for mapping DNN models to cloud FPGAs,” in Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). ACM, 2019, pp. 73-82.

[41] Xilinx, “Xilinx ML suite,” 2019. [Online]. Available: [43] X. Wei, Y. Liang, X. Li, C. H. Yu, P. Zhang, and J. Cong, “TGPA:

https://github.com/Xilinx/ml-suite tile-grained pipeline architecture for low latency CNN inference,” in
[42] M. Zhang, L. Li, H. Wang, Y. Liu, H. Qin, and W. Zhao, “Optimized 2018 IEEE/ACM International Conference on Computer-Aided Design
compression for implementing convolutional neural networks on FPGA,” (ICCAD). IEEE, 2018, pp. 1-8.

Electronics, vol. 8, no. 3, p. 295, 2019.

