
MOCHA: Multinode Cost Optimization
in Heterogeneous Clouds with Accelerators

Peipei Zhou1,2, Jiayi Sheng3, Cody Hao Yu2,4, Peng Wei2,5, Jie Wang2, Di Wu2,6, Jason Cong2 ∗
1University of Pittsburgh 2University of California, Los Angeles
3Microsoft 4Amazon Web Services 5Google 6Facebook

peipei.zhou@pitt.edu,{hyu,peng.wei.prc,jiewang,allwu,cong}@cs.ucla.edu,jisheng@microsoft.com

ABSTRACT
FPGAs have been widely deployed in public clouds, e.g., Amazon
Web Services (AWS) and Huawei Cloud. However, simply offloading
accelerated kernels from CPU hosts to PCIe-based FPGAs does not
guarantee out-of-pocket cost savings in a pay-as-you-go public
cloud. Taking Genome Analysis Toolkit (GATK) applications as
case studies, although the adoption of FPGAs reduces the overall
execution time, it introduces 2.56× extra cost, due to insufficient
application-level speedup by Amdahl’s law. To optimize the out-
of-pocket cost while keeping high speedup and throughput, we
propose Mocha framework as a distributed runtime system to fully
utilize the accelerator resource by accelerator sharing and CPU-
FPGA partial task offloading. Evaluation results on HaplotypeCaller
(HTC) and Mutect2 in GATK show that on AWS, Mocha saves on
the application cost by 2.82× for HTC, 1.06× for Mutect2 and on
Huawei Cloud by 1.22×, 1.52× respectively than straightforward
CPU-FPGA integration solution with less than 5.1% performance
overhead.

KEYWORDS
CPU-FPGA Co-scheduling; Cost Optimization; Analytic Modeling;
Distributed Runtime; Accelerators; Heterogeneous; Public Clouds

ACM Reference Format:
Peipei Zhou, Jiayi Sheng, Cody Hao Yu, Peng Wei, Jie Wang, Di Wu, Ja-
son Cong. 2021. MOCHA: Multinode Cost Optimization in Heterogeneous
Clouds with Accelerators . In Proceedings of the 2021 ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays (FPGA ’21), February
28-March 2, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3431920.3439304

1 INTRODUCTION
Field-programmable gate arrays (FPGAs) are gaining in popular-
ity to accelerate a variety of applications in data centers for high

∗This research was performed while Peipei Zhou (intern), Jiayi Sheng, Cody Hao Yu
(intern) and Di Wu were at Falcon Computing Solutions and Peipei Zhou, Cody Hao
Yu and Peng Wei were graduate students at UCLA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’21, February 28-March 2, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8218-2/21/02. . . $15.00
https://doi.org/10.1145/3431920.3439304

performance and energy efficiency. Many public clouds, includ-
ing AWS Elastic Compute Cloud (EC2), Huawei, Baidu and Al-
ibaba [1, 3, 6, 23], have released their FPGA-powered instances.
However, the overall system-level speedup could be limited due to
CPU-FPGA data transfer inefficiency even if the FPGA accelerator
is well designed. Although a number of approaches have been pro-
posed to improve the system efficiency [11–13, 19], none of them
paid enough attention to the out-of-pocket cost, one of the most
important issues in the public cloud market.

To illustrate the cost issue in public clouds with FPGAs, we
conduct case studies with FPGA accelerators in widely used genome
variant calling programs in Genome Analysis Toolkit (GATK) [31]:
HaplotypeCaller (HTC) [25] and Mutect2 [10]. GATK is one of
the most popular toolsets in computational genome analysis. HTC
and Mutect2 are the two most time-consuming applications in
GATK that aim to find germline variants for pair-end sequence
reads and tumor sequence reads. Both applications feature a high-
complexity computation kernel called Pair Hidden Markov Models
(PairHMM) [15] that can be accelerated by 40× on FPGA. This,
however, leads to the result that HTC costs $6.35 on f1.2xlarge
AWS EC2 instance with an FPGA when comparing to the cost as
$2.46 on m4.2xlarge general purpose CPU instance, indicating
prohibitive cost overhead, compared to a 1.6× end-to-end speedup.
A key question is being raised: How does using FPGA accelerators
impact an application’s out-of-pocket cost in public cloud services?

The rationale is fairly straightforward: FPGA instances are priced
higher than general purpose CPU instances, so applying FPGA
accelerators has to bring high enough application-level speedup
to achieve cost saving. Taking AWS EC2 as an example, Table 11
shows that the FPGA instance is priced at $1.65/Hour, which is
4.125× over the price of CPU instance with the same type and
number of virtual CPU cores (vCPU). In this case, if adopting FPGA
in AWS does not achieve 4.125× application-level speedup, this
solution is not as cost-efficient as pure CPU solutions. In fact, our
initial CPU-FPGA integration for HTC, which lets all eight CPU
cores send all PairHMM tasks to the FPGA, only demonstrates 1.6×
application-level speedup for HTC, causing 2.56× of costs over the
CPU-only system. Note that since the proportion of the PairHMM
kernel in the whole application is 39%, the optimal application-level
speedup of HTC is only 1.64× by Amdahl’s law (see Section 2).

Although we cannot further improve the application-level
speedup of HTC due to Amdahl’s law, we can still achieve cost
saving by improving the utilization of FPGA. Our PairHMM ac-
celerator on FPGA is capable of achieving 40× speedup over a
single-core CPU, the accelerator cannot be fully utilized by eight
vCPU cores. As a result, we borrow more vCPU cores from other
1The prices in Tables 1, 2 and 3 were collected in January 2019.

https://doi.org/10.1145/3431920.3439304

Table 1: Price comparison of CPU and FPGA instances on
public cloud.

CPU Instance CPU-FPGA Instance

AWS EC2 [5] 8 vCPU, $0.4/hr 8 vCPU + 1 Xilinx VU9P,
$1.65/hr (4.125×)

Huawei [22] 32 vCPU, $1.64/hr 32 vCPU + 1 Xilinx VU9P,
$2.83/hr (1.725×)

CPU instances via network to fully utilize the accelerator. In other
words, we could achieve cost saving by performing many HTC
tasks on a system with one FPGA and multiple CPU instances.

Based on the idea above, we design and implement Mocha frame-
work to guarantee the cost saving for arbitrary applications with
FPGA accelerators in public clouds. Mocha first profiles the given
application with FPGA accelerators and identifies the performance
bottleneck (CPU or FPGA). For the CPU-bottleneck applications
such as HTC, Mocha improves FPGA utilization by sharing one
FPGA among multiple CPU nodes through the network. For the
FPGA-bottleneck applications like Mutect2, Mocha orchestrates
CPU cores to execute some tasks instead of offloading all of them
to the FPGA. As a result, Mocha could improve the overall system
resource utilization and thus reduce the application cost for any ap-
plications no matter how small the proportion of the kernel is as long
as the FPGA kernel speedup is higher than the cost ratio. To demon-
strate the cost efficiency improvement from using Mocha, we give
concrete and solid accelerator integration case studies on HTC and
Mutect2 in GATK in Section 4. The evaluation is performed on
both AWS and Huawei Cloud. In summary, the paper makes the
following contributions:

• We analyze the out-of-pocket cost in using FPGAs on public
clouds by using two cases where computation throughput
of CPU and FPGA does not match, which explains how they
result in extra cost over the CPU-only solution.

• We propose an end-to-end automation framework called
Mocha that realizes FPGA sharing among multiple nodes
through network and partial task offloading policy for CPUs
in order to fully utilize FPGA and CPUs for any applications.
Mocha guarantees that the cost efficiency of CPU-FPGA
solution is higher than pure CPU solution as long as the
FPGA kernel speedup is higher than the cost ratio.

• We provide model-driven cost optimization case studies with
Mocha for two applications in GATK, HTC and Mutect2, on
two different public cloud platforms AWS and Huawei Cloud.
Andwe compare the results with two baseline solutions, pure
CPU and straightforward CPU-FPGA integration.

Comparing to the straightforward CPU-FPGA integration, our op-
timal solution with Mocha achieves a state-of-the-art performance
while saving on costs by 2.82× for HTC, 1.06× for Mutect2 on AWS,
and 1.22×, 1.52×, respectively, on the Huawei Cloud.

2 ANALYSIS AND MODELING
We first analyze the performance and cost for an application that
consists of independent parallel tasks on a single-node multiple-
core CPU platform, where the execution timeline is shown in Fig-
ure 1a. For illustration purposes, we firstly assume the input size and

1-r r
1
2

..…

p
i-1 i i+1

..…

..…

..…

..…

..…

Figure 1a: CPU-Only System

1
2…

p
batch	i-1

..…
..…

..…

1-r r/s

batch	i batch	i+1

Figure 1b: CPU-FPGA integration case a, CPU is bottleneck

1
2

…
…

p

batch	i-1

batch	i+1

gap

batch	i

P=6	is	
equivalent	
to	P=4

Figure 1c: CPU-FPGA integration case b, FPGA is bottleneck

execution time of each task are the same. Specifically, we consider
the following factors in our analysis:

• M is the total number of tasks.
• P is the total number of CPU cores in a single node.
• t is the time of each task on a CPU core.
• r is the proportion of kernel that can be offloaded to a FPGA
accelerator.

• S is the end-to-end FPGA accelerator speedup compared to
a single-core CPU. It includes the CPU-to-FPGA communi-
cation overhead.

• c is the cost per unit time of a CPU core.
• CR is the cost ratio of FPGA device compared to a single-
core CPU. For example, on AWS f1.2xlarge instance, CR =
($1.65/$0.4*8-8) = 25.

• 𝑃 (Matching Core Number) is the number of CPU cores in the
CPU-FPGA integration system where both CPU and FPGA
are 100% utilized.

• T is the total runtime. C is the total cost.
• I is the cost index, that is, normalized cost of CPU-FPGA in-
tegrated solutions compared to pure CPU solutions. Mocha
optimization target is to achieve the lowest I for CPU-
FPGA integrated solutions.

As shown in Figure 1a, in each batch, P tasks are executed on
P CPU cores in parallel. There are 𝑀

𝑃
batches of task in total, the

total execution time 𝑇0 and cost 𝐶0 of a CPU-only system are:

𝑇0 =
𝑀

𝑃
× 𝑡, 𝐶0 = 𝑇0 × 𝑃 × 𝑐 = 𝑀 × 𝑡 × 𝑐 (1)

Straightforward CPU-FPGA integrated runtime systems like
Blaze [19] intuitively send all accelerable tasks to the FPGA, and
leverage a task queue to deal with tasks requested from different
workers. In this scenario, workers have to stay idle before their
request can be fulfilled on the FPGA accelerator. In this subsection,
we analyze the performance and cost of such systems.

Depending on r, S, and P, there are two cases when the compu-
tation throughput of CPU and FPGA are not balanced. Here we
gradually increase P to illustrate these two cases.

Case A, 𝑷 < ˜𝑷 : FPGA is underutilized.When all CPU cores of-
fload accelerable tasks to FPGA, those tasks need to be fulfilled on
the FPGA sequentially. As shown in Figure 1b, cores 1 to P offload
tasks on FPGA in a pipeline fashion. After core 1 finishes batch i, it
starts the non-accelerable part of batch i+1 on a new data partition
2. When it is about to request accelerator in batch i+1, all the tasks
in the previous batch have finished execution on FPGA already.
Therefore, its kernel acceleration request can be fulfilled without
waiting. Thus, core 1 has no idle cycles, nor do other cores. In this
case, for any CPU core, it only needs to wait 𝑟

𝑆
× 𝑡 when the FPGA

is working on kernel part and there are no other idle cycles. Conse-
quently, the execution time for each batch task is 𝑡 × (1 − 𝑟 + 𝑟

𝑆
),

and the total runtime 𝑇1𝑎 is :
𝑇1𝑎 =

𝑀

𝑃
× 𝑡 × (1 − 𝑟 + 𝑟

𝑆
), (2)

For a platform with P CPU cores and one FPGA, the total cost
per unit time is (𝑃 + 𝐶𝑅) × 𝑐 , so total cost to run the application
𝐶1𝑎 is:

𝐶1𝑎 = 𝑇1𝑎 × (𝑃 +𝐶𝑅) × 𝑐

= 𝑀 × 𝑡 × 𝑐 × (1 − 𝑟 + 𝑟

𝑆
) × (1 + 𝐶𝑅

𝑃
)

(3)

Note that since the FPGA is not fully utilized, there are idle
cycles between offloaded tasks. Comparing𝐶1𝑎 in Equation 3 to𝐶0
in Equation 1, we can have Cost Index 𝐼 = 𝐶1𝑎

𝐶0
= (1−𝑟 + 𝑟

𝑆
) (1+ 𝐶𝑅

𝑃
).

When we gradually increase P to 𝑃 , FPGA reaches 100% utiliza-
tion. This happens when total runtime of offloaded tasks from 𝑃

cores equals to the runtime of a single batch task time. That is,
𝑃 × 𝑟

𝑆
× 𝑡 = (1− 𝑟 + 𝑟

𝑆
) × 𝑡 . We refer to 𝑃 asMatching Core Number,

and it can be calculated as 𝑃 =
(1−𝑟)×𝑆

𝑟 + 1.
Case B, 𝑷 > ˜𝑷 : FPGA becomes bottleneck and CPU has idle
cycles. When P is larger than 𝑃 , FPGA is fully utilized, and CPU
cores have to wait more cycles in addition to 𝑟

𝑆
× 𝑡 . As shown in

Figure 1c, after core 1 finishes non-accelerated part of batch 𝑖 , it
sends requests to the accelerator task queue. Since the offloaded
task from core P in batch 𝑖 − 1 has not finished yet, core 1 needs to
wait until its task can be executed on FPGA. In this case, launching
more than 𝑃 CPU cores cannot further improve the application
performance. Application runtime now equals to total runtime for
FPGA to finish kernel execution from all𝑀 tasks, as𝑇1𝑏 = 𝑀 × 𝑟×𝑡

𝑆
.

Equivalently, application runtime equals to total runtime for CPU
cores to finish 𝑀

𝑃
batches of task, which is𝑇1𝑏 = 𝑀

𝑃
× (1−𝑟 + 𝑟

𝑆
) × 𝑡 .

As 𝑃 = ((1−𝑟)×𝑆𝑟 + 1), we can rewrite 𝑇1𝑏 = 𝑀

𝑃
× (1 − 𝑟 + 𝑟

𝑆
) × 𝑡 =

𝑀

𝑃
×(1−𝑟) (1+ 𝑟

(1−𝑟)×𝑆)×𝑡 =
𝑀

𝑃
×(1−𝑟) (1+ 1

𝑃−1
)×𝑡 = 𝑀

𝑃−1
×(1−𝑟)×𝑡 .

Using basic algebra rules, we have:

𝑇1𝑏 = 𝑀 × 𝑟

𝑆
× 𝑡 =

𝑀

𝑃 − 1
× (1 − 𝑟) × 𝑡,

= 𝑀 × 𝑡 × 𝑟 + (1 − 𝑟)
𝑆 + 𝑃 − 1

=
𝑀

𝑃 − 1 + 𝑆
× 𝑡

(4)

Actually, 𝑇1𝑏 = 𝑀

𝑃−1+𝑆
× 𝑡 is quite intuitive, as there are in total

M tasks, each with time t, and in the system there is a fully utilized
FPGA that works as S CPU cores, and 𝑃 equivalent CPU cores. The

2Here we plot the accelerated part at the end of the task to simplify the illustration. In
real application, the accelerated kernel can be in anywhere in a task.

minus 1 CPU core accounts for the penalty of CPU time that is
spent waiting for FPGA kernel to be finished.

With 𝑇1𝑏 , the total cost is:
𝐶1𝑏 = 𝑇1𝑏 × (𝑃 +𝐶𝑅) × 𝑐 = 𝑀 × 𝑡 × 𝑐 × (𝑃 +𝐶𝑅

𝑃 − 1 + 𝑆
) (5)

Comparing 𝐶1𝑏 in Equation 5 to 𝐶0 in Equation 1, Cost Index 𝐼 =
𝐶1𝑏
𝐶0

= 𝑃+𝐶𝑅
𝑃−1+𝑆

.
We summarize the above two cases and derive a generic model

for Cost Index of straightforward CPU-FPGA system compared to
CPU-only system as follows:

𝐼 =

{
(1 − 𝑟 + 𝑟

𝑆
) (1 + 𝐶𝑅

𝑃
) if 𝑃 ≤ 𝑃 = ((1−𝑟)×𝑆𝑟 + 1)

𝑃+𝐶𝑅
𝑃−1+𝑆

if 𝑃 > 𝑃 = ((1−𝑟)×𝑆𝑟 + 1)
(6)

Table 2: Analysis of Cost Index I for HTC and Mutect2 on
Amazon EC2 f1.2xlarge, S = 40, P = 8, CR = 25.

Application r S 𝑃 Case A or B I

HTC 39% 40 64 A (8 < 64) 2.56×
Mutect2 89% 40 6 B (8 > 6) 0.73×

Table 3: Analysis of Cost Index I for HTC and Mutect2 on
Huawei fp.1c, S = 43, P = 32, CR = 23.

Application r S 𝑃 Case A or B I

HTC 39% 43 68 A (32 < 68) 1.06×
Mutect2 89% 43 6 B (32 > 6) 1.14×

As shown in Table 2, both HTC and Mutect2 use PairHMM
kernel, but kernel proportions are different. According to the pro-
filing results using all the datasets shown in Table 6, pairHMM
kernel takes only 39% in HTC and 89% in Mutect2. We implement
a PairHMM kernel for Xilinx UltraScale FPGA on Amazon EC2
f1.2xlarge instance, and achieve 40× speedup over a single CPU
core. To match the computation throughput of CPU cores with the
PairHMM kernel in HTC, we need 𝑃 =

(1−39%)
39% × 40 + 1 = 63.6

cores, which is much larger than the number of CPU cores (P =
8) on the AWS f1.2xlarge. In this case, FPGA board in HTC is
severely underutilized. As shown in Table 2, Cost Index I in HTC
with CPU and FPGA is about 2.56× than with only CPUs. On the
other hand, for Mutect2, we only need six cores (𝑃 = 6), which
means equivalently there are only six working CPU cores and two
other cores are idle.

Similarly, Table 3 shows I on Huawei fp.1c instance that has 32
CPUs and CR = $2.83/$1.64*32-32 = 23. For HTC on this platform,
when there are 32 CPU cores, FPGA utilization is better than that
on AWS f1.2xlarge instance. However, it is still not fully utilized
and I is still larger than 1. For Mutect2, Matching Core Number 𝑃 is
6, which leaves 26 CPU cores idle. Thus, I is higher and now it is
1.14×, larger than 1.

To sum up, for straightforward CPU-FPGA integration, I depends
on r, S, P, CR and is not guaranteed to be smaller than 1, which
means the out-of-pocket cost is higher than CPU-only solution
because either CPU or FPGA is underutilized.

3 MOCHA FRAMEWORK
In this section, we propose Mocha framework to optimize overall
application cost on public clouds. We first present the key approach

of Mocha framework in Section 3.1 that balances the throughput
of CPU cores (by partially offloading kernel tasks) and FPGA (by
sharing FPGA among multiple nodes) to achieve full computation
resource utilization. It means Mocha guarantees the cost efficiency
for any applications as long as FPGA speedup S is larger than cost
ratio CR.

According to the approach, Figure 2 depicts an overview of
Mocha framework. By taking the user application and an instance
list of public cloud, Mocha first launches its profiling application to
obtain kernel proportion r, kernel speedup S, cost ratio CR of CPU-
FPGA instance and number of CPU cores P on CPU instances. The
information is used as the input of our cost model to achieve cost
efficiency by determining the system configuration (e.g., number
and type of instances to be launched, the percentage of total kernel
tasks to be offloaded to FPGAs) to generate Mocha configuration
in Section 3.2.

By taking the generated system configuration, Mocha runtime
(Section 3.3) creates clients in the user application on each instance
that needs to leverage the FPGA accelerator. The runtime, shown
in the right part of Figure 2, includes client and node accelerator
manager (NAM). The client is launched on CPU instances to offload
partial tasks to the instance with an FPGA accelerator via network.
NAM is launched on CPU-FPGA instances to receive tasks from
multiple clients and schedule tasks on the accelerator.

Mocha config:
nodes: {
name: htc-f1.2x, type: f1.2xlarge
name: htc-m4.10x, type: m4.10xlarge
name: htc-m4.4x, type: m4.4xlarge }
delta 𝛿: 1

Profiling
App: r

Accelerators:
S

Platform (AWS)
m4.2x, CPU#: 8, $0.4, CR: 1

m4.4x, CPU#: 16, $0.8, CR: 1
m4.10x, CPU#: 40, $2, CR: 1
f1.2x, CPU#: 8, $1.6 , CR: 25

Optimizer

FPGA

NAM Client

App
Client

App
Client

config

config config

htc-f1.2x

htc-m4.10xhtc-m4.4x

Mocha RuntimeMocha Modeling

Figure 2: Mocha framework overview

3.1 CPU-FPGA Integration and Cost Modeling
In this subsection, we show that as long as 𝑆 − 1 > 𝐶𝑅, Mocha is
guaranteed to optimize that Cost Index I to be smaller than
1 for both Case A and Case B.
FPGA Utilization Improvement: For applications of Case A like
HTC, one opportunity to reduce I is to improve FPGA utilization
by sharing FPGA among multiple nodes through network. In other
words, when 𝑃 is larger than the maximum number of CPU cores
on a single node 𝑃0 in a datacenter, we can launch more CPU
node(s) to request the same FPGA. In Equation 6, if we set 𝑃 = 𝑃 =

((1−𝑟)×𝑆𝑟 + 1), we can achieve the optimized cost index 𝐼 ′ as:

𝐼 ′ = (1 − 𝑟 + 𝑟

𝑆
) (1 + 𝐶𝑅

𝑃
) = (1 − 𝑟 + 𝑟

𝑆
) + (1 − 𝑟 + 𝑟

𝑆
) × 𝐶𝑅

𝑃

= (1 − 𝑟 + 𝑟

𝑆
) + (𝑃 × 𝑟

𝑆
) × 𝐶𝑅

𝑃
= 1 − 𝑟 + 𝑟 × (𝐶𝑅 + 1)

𝑆

(7)

We can see from the equation that when S > CR + 1, 𝐼 ′ is guaranteed
to be smaller than 1. For HTC on AWS, if we set 𝑃 as 64, 𝐼 ′ is 0.86
< 1, as opposed to 𝐼 as 2.56× in straightforward integration.

CPU Utilization Improvement: For Mutect2 on Huawei as
shown in Table 3, PairHMM kernel dominates 89% of overall execu-
tion time, so its matching core number is 𝑃 =

(1−89%)
89% × 43 + 1 = 6.

As there are in total 32 CPU cores on Huawei FP1 instance, CPU
is severely underutilized (6 out of 32 are used) and I is 1.14× over
pure CPU solutions.

For applications of Case B like Mutect2, one opportunity to
reduce I is to improve CPU utilization by partial task offloading
policy. As demonstrated by Figure 1c, for core 1 in batch i, instead
of waiting extra cycles on the FPGA, core 1 can directly work on
the shadow part (though using more time) to avoid waste of CPU
resource. Intuitively, the most efficient way to utilize FPGA and
CPU in this case is to schedule a part of the kernel tasks (𝑀1) on
FPGA and the other tasks (𝑀2) on CPU, as shown in Figure 3. Thus,
the overall application runtime𝑇 ′

1𝑏 and tasks number𝑀1,𝑀2 follow
equations as:

P"	cores	
M1	tasks

P − P"	cores
M2 tasks

Figure 3: Partial task offloading

𝑇 ′
1𝑏 =

𝑀1

𝑃 − 1 + 𝑆
× 𝑡 =

𝑀2

𝑃 − 𝑃
× 𝑡,

𝑀1 +𝑀2 = 𝑀,

(8)

We can rewrite Equation 8 to𝑇 ′
1𝑏 = 𝑀1+𝑀2

𝑃−1+𝑆 × 𝑡 = 𝑀
𝑃−1+𝑆 × 𝑡 . As a

result, the optimized cost index 𝐼 ′ = 𝑇 ′
1𝑏×(𝑃+𝐶𝑅)×𝑐×/𝐶0 = 𝑃+𝐶𝑅

𝑃−1+𝑆 ,
and 𝐼 ′ < 1 when CR < S - 1. This is achieved when we offload
𝛿 =

𝑀1
𝑀

= 𝑃−1+𝑆
𝑃−1+𝑆 of the total kernel tasks to the FPGA and keep

1 − 𝛿 = 𝑃−𝑃
𝑃−1+𝑆 of the total kernel tasks on the CPU. For Mutect2 on

Huawei, if we set 𝛿 = 6−1+43
32−1+43=0.65, 𝐼

′ is 0.74 < 1, as opposed to 𝐼
as 1.14× in the straightforward integration.

To sum up, no matter 𝑃 is larger or smaller than the number
of CPU cores in a single node 𝑃0, we can either choose to launch
more CPU nodes or partially offload tasks to achieve Optimized
Cost Index 𝐼 ′ as:

𝐼 ′ =

{
1 − 𝑟 + 𝑟×(𝐶𝑅+1)

𝑆
if 𝑃 > 𝑃0, set 𝑃 = 𝑃 on multi-nodes

𝑃+𝐶𝑅
𝑃−1+𝑆 =

𝑃0+𝐶𝑅
𝑃0−1+𝑆 if 𝑃 < 𝑃0, set 𝛿 = 𝑃−1+𝑆

𝑃−1+𝑆 , 𝑃 = 𝑃0
(9)

Consequently, as long as 𝑆 − 1 > 𝐶𝑅, 𝐼 ′ is guaranteed to be smaller
than 1 in both cases. This modeling gives quantitative support of
CPU-FPGA integration for Mocha to set up a cluster with appropri-
ate CPU-FPGA nodes and pure CPU nodes to achieve full resource
utilization within the cluster.

3.2 Cost Model Realization
After profiling the application and FPGA accelerator to get r, S,
Mocha calculates 𝑃 as described in Equation 9. Specifically, with r,
s and the platform information which lists available CPU instances
and number of CPU cores within an instance, we can obtain the
number and type of CPU instances we should launch to optimize the
cost efficiency. For example, on AWS EC2, m4 series instances have
m4.x, m4.2x, m4.4x, m4.10x and m4.16xwhich have 4, 8, 16, 40,

64 cores respectively. According to Equation 9, if 𝑃 is larger than
𝑃0, we set a cluster within the total 𝑃 cores. For example, for HTC
on AWS EC2, 𝑃 is 64, which is larger than 8. We first select f1.2x
instance, and then select other CPU nodes to get the remaining
64-8 = 56 CPU cores. We use a greedy algorithm to iteratively pick
up the largest possible instance until all the remaining cores are
allocated. In this example, we first pick up m4.10x which has 40
cores, and update the remaining cores as 56-40 = 16. Then we pick
up m4.4x and the number of the remaining cores reaches zero. As
a result, three instances including f1.2xlarge, m4.10xlarge, and
m4.4xlarge with 8, 40, 16 cores are selected. If 𝑃 is smaller than 𝑃0
cores, we use only one CPU-FPGA instance, and set 𝛿 accordingly.
For example, for Mutect2 on AWS EC2, 𝑃 is 6, we can simply select
f1.2xlarge and calculate 𝛿 = 95% based on Equation 9.

According to the determined system configuration, Mocha
launches new instances and broadcasts the necessary information
to them. In order to have a low-latency and high-throughput net-
work among multiple nodes in AWS EC2, Mocha first creates an
AWS EC2 placement group [4] and places all instances in the same
group. In this case, all instances within a group have a network per-
formance as high as 10 Gb/s (m4.2x and m4.x have 5 Gb/s network
bandwidth as node limit). On Huawei cloud, all general computing
instances have a 6 Gb/s network bandwidth.

3.3 Mocha Runtime
After the cluster has been launched, Mocha runtime starts executing
the application. In Mocha runtime, there are twomajor components:
CPU client and node accelerator manager (NAM). The CPU client
is launched on all instances to communicate with the NAM for data
sharing as well as task offloading to the FPGA accelerator (locally
and remotely). The NAM in Mocha runtime is adapted from Blaze
node manager [19, 37], an open source framework that enables
FPGA accelerators as a service (FaaS). Mocha enhances the NAM
by adding a feature that can divide a powerful FPGA accelerator
into multiple logic accelerators.

In the rest of this section, we explain the communication mecha-
nism among the CPU client, NAM, and the accelerator.

Client NAM

Task

start() process()

Control Signal

Data Signal

(a)

NAM
Task Q

K
1

Q

K
2

Q

K
3

Q

FPGA1

Kernel1 Kernel2 Kernel3

PCIe

(b)

FPGA2

Figure 4: (a) The communication protocol between Client
and Node Accelerator Manager (NAM), (b) NAM enhanced
by Mocha

Communication between CPU client and NAM: As shown in
Figure 4a, CPU client first connects to the instance with FPGA
accelerators according to the system configuration broadcast by

Mocha master. The client sends the message ACCREQUEST to NAM
to ask for an accelerator with accelerator ID “PairHMM”. If NAM
has loaded the requested accelerator bitstream on FPGA, it sends
ACCGRANT to acknowledge the client to send metadata and the input
data block(s) of the tasks in ACCDATA. After all input data blocks are
ready in NAM, NAM enqueues the task with input blocks to a task
queue. After the task is finished, NAM sends back ACCFINISH with
the metadata of output data block(s) to the client. When a client and
NAM are on the same node, data are shared between a client and
NAM directly through memory mapped files. When a client and
NAM are on different nodes, data are shared through network by
using Boost.Asio library [29]. Handling and dispatching requests
in NAM are quite lightweight and impacts 4.7% overall application
acceleration when using one NAM serving up to 64 software client
threads.
Communication between NAM and accelerator: In the orig-
inal Blaze, the task queue directly dispatches tasks to platform
queues. Each platform queue is associated with a physical FPGA
device. Mocha enhances the NAM by supporting multiple kernels
in a single FPGA. As shown in Figure 4b, each kernel queue is
associated with a FPGA kernel instead of a FPGA device. We con-
figure one FPGA device to homogeneous smaller kernels for better
routability. Nonetheless, our model could be extended to support
heterogeneous kernels by modeling proportion r1, r2,... speedup
S1, S2,... for n kernels. Then, FPGA resources will be allocated to
different kernels to configure accelerator parallelism respectively
so that S1 and S2 match the proportion as S1/S2 = r1/r2.

Table 4: Time breakdown (secs) of a representative
PairHMM task with 3MB input and 40KB output.

kernel on CPU kernel on FPGA PCIe network
91 2.29 0.0005 0.004

4 EXPERIMENTAL EVALUATIONS
To demonstrate Mocha, we first implement PairHMM (kernel from
HTC and Mutect2) accelerator on Xilinx VCU1525 FPGAs, which is
a common part on many public FPGA cloud instances. The experi-
ments were carried out in January 2019. To the best of our knowl-
edge, our accelerator achieves the best single-FPGA performance
comparing with previous work [7, 21, 27, 32, 33]. As shown in Ta-
bles 2 and 3, The speedup S is larger than CR+1, which guarantees
improvement of cost efficiency of CPU-FPGA solutions after Mocha
is used. To be noted here, S is the end-to-end FPGA accelerator
speedup, it includes PCIe data transfer and network communica-
tion. If an application is I/O intensive and speedup S is lower, our
analytical model in Equation 9 reflects the trend that the cost ratio
I’ of adopting FPGA could be higher than the CPU-only solution.
For PairHMM kernel on AWS EC2, we give one representative task
breakdown as shown in Table 4. Here, PCIe bandwidth is assumed
as 6GB/s and network bandwidth is 10Gb/s. After including network
latency, we update S from 39.7 to 39.6 and recalculate Matching
Core Number in the modeling phase.

We have two baselines: a pure CPU solution and a
straightforward CPU-FPGA integration solution using Blaze. For
each dataset, we measure the time by calculating the average la-
tency of 10 runs. On each platform, for each application, Mocha

Table 5: Mocha system configuration for HTC and Mutect2 on AWS EC2 and Huawei. For example, eight f1.2x:8 means we
launch eight f1.2x instances, each with 8 CPU cores.

Application AWS EC2 Huawei
𝑃 pure CPU Blaze [19] Mocha 𝑃 pure CPU Blaze [19] Mocha

HTC 64 m4.16x :64 eight f1.2x: 8 f1.2x: 8, m4.10x: 40, m4.4x: 16 64 s2.16x: 64 two fp.1c: 32 fp.1c:32, s2.8x:32
Mutect2 6 m4.2x:8 f1.2x: 8 f1.2x: 8 6 s2.8x: 32 fp.1c: 32 fp.1c: 32

Table 6: Comparison of performance and cost of three solutions: pure CPU solution, Blaze and Mocha. A star★ in normalized
runtime and cost line represents that Mocha is the cheapest or fastest among the three solutions.

Application SampleID
AWS EC2 Huawei

pure CPU Blaze [19] Mocha pure CPU Blaze [19] Mocha
Time Cost Time Cost Time Cost Time Cost Time Cost Time Cost

HTC NA12878 [24] 578 $0.51 362 $1.33 386 $0.48 577 $0.55 361 $0.58 378 $0.49
HTC NA12891 [24] 592 $0.53 381 $1.40 404 $0.50 591 $0.57 369 $0.60 373 $0.48
HTC NA12892 [24] 549 $0.49 352 $1.29 374 $0.46 542 $0.52 349 $0.57 356 $0.46
HTC NA12878Garvan [34] 2767 $2.46 1731 $6.35 1767 $2.18 2709 $2.61 1710 $2.79 1778 $2.30
HTC Normalized 1x 1x 0.63x 2.62x 0.66x 0.93x (★) 1x 1x 0.63x 1.07x 0.65x 0.87x (★)

Mutect2 TCRBOA1 [8] 16784 $1.86 3047 $1.40 2885 $1.32 4196 $1.90 2807 $2.21 1850 $1.45
Mutect2 Normalized 1x 1x 0.18x 0.75x 0.17x (★) 0.70x (★) 1x 1x 0.67x 1.16x 0.44x (★) 0.76x (★)

generates a system configuration file which specifies the number
and type of CPU nodes to be launched to fully utilize CPUs and
FPGAs. To conduct a fair comparison of Mocha with two baselines,
we launch instances for each baseline with the same number of CPU
cores as 𝑃 in Mocha modeling. We summarize the instances choices
for the two baselines and Mocha in Table 5.

Table 6 gives comparison of performance in seconds and cost in
dollars of the pure CPU solution, Blaze, and Mocha on four DNA
sequences for HTC and one sequence for Mutect2 in AWS and
Huawei. We also give normalized performance improvement and
application cost of Blaze and Mocha as compared to the pure CPU
solution. The average of normalized value of HTC and Mutect2 are
shown in bold font to highlight the performance and cost difference
of the two baselines and Mocha.

As shown in the row of averaged normalized value for HTC,
Blaze incurs 2.62x extra cost than pure CPU, where inefficiency
comes from underutilization of FPGA. Mocha improves cost effi-
ciency by offloading tasks from multiple CPU instances to a single
shared f1.2x FPGA instance. As a result, Mocha can spend less
dollar per hour than Blaze (bring down 2.62x to 0.93x) while tak-
ing 0.66x of the original runtime for pure CPUs, which has 5.1%
degradation compared to 0.63x of Blaze. For Mutect2, according to
Table 2, 𝑃 is 6, very close to 8 CPU cores on f1.2x, which implies
a narrow optimization space for Mocha. In this case, by partially
offloading kernel tasks from FPGA to CPU, Mocha further improves
the performance of Blaze by 0.18x

0.17x=1.06x. In Mutect2, as Blaze and
Mocha use the same instance configuration, they spend the same
amount of dollar per hour. The 1.06x performance improvement
naturally translates to 1.06x (equivalently, 0.75x0.70x) cost savings. Sim-
ilar analysis can be performed on Huawei Cloud. As compared
to Blaze, Mocha improves cost efficiency of HTC by 1.07x

0.87x = 1.22x
with 3% performance degradation. In Mutect2, Mocha improves
performance by 0.67x

0.44x= 1.52x, which equals to 1.52x cost savings.
In summary, for HTC and Mutect2 on AWS and Huawei Cloud,
Mocha provides close to the shortest (if not the shortest) and the
cheapest solution among the three solutions.

5 RELATEDWORK
Cost Optimization on Cloud Systems. There are a lot of exist-
ing work ([30], HCloud [14], Paris [40], Tributary [18], Selecta [28],
CherryPick [2], Doppio [41]) discussing about optimizing the cost

on cloud systems. Mocha creates choices on virtual instances that
are composed of CPU instances and accelerator instances and can
be applied together with the existing work. Mocha creates choices
on virtual instances that are composed of CPU instances and ac-
celerator instances and can be applied together with the existing
work.
FPGA Sharing on Cloud Systems. Researchers have devoted a
lot of efforts to integrate FPGAs ([9, 16, 17, 20, 26, 35, 39]), GPUs ([36,
38]) into current cloud computing environment. Mocha provides
analytical modeling and can be used as a guide in cost optimization
when adopting existing CPU-Accelerator integration.

6 CONCLUSION
In this paper, we justify that in terms of the out-of-pocket cost
FPGA is not a universal solution to accelerate all applications. It
works best for applications that are rich in data parallelism, whose
speedup S is higher than cost ratio CR+1. Thus, what users pay for
FPGA brings throughput improvement in return. Mocha is the first
work to model the cost: the very metric that customers care about
when using FPGA in the cloud. From the modeling, we find the
inefficiency of previous work where either FPGA or CPU resources
are wasted and optimize the CPU-FPGA resources allocation by
selecting proper instances provided by cloud vendors. Since CPU-
FPGA ratio is set by cloud vendors and not customizable at this
time, we compose “virtual” instances with the optimal CPU:FPGA
ratio, which is the key to optimize the overall cost. We present per-
formance comparison of our accelerator and provide model-driven
cost optimization case studies for Genome Variant Calling appli-
cations, HTC and Mutect2, in two public cloud platforms Amazon
EC2 and Huawei Cloud. On AWS, adopting Mocha gives 2.82x cost
saving for HTC, 1.06x for Mutect2. While on Huawei it gives 1.22x,
1.52x cost savings respectively with less than 5.1% performance
overhead.

7 ACKNOWLEDGMENT
We acknowledge the support from the Center for Domain-Specific
Computing industrial partners. We also acknowledge the support
from the University of Pittsburgh New Faculty Start-up Grant. We
would like to thank all the reviewers for their valuable feedback.
We thank Marci Baun for helping edit the paper and Amazon for
the AWS credit donation.

REFERENCES
[1] Alibaba. 2019. FPGA-based compute-optimized instance families. https://www.

alibabacloud.com/help/doc-detail/108504.htm.
[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,

Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 469–482. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/alipourfard

[3] Amazon. 2017. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-
types/f1/.

[4] Amazon. 2019. Amazon EC2 Placement Groups. https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/placement-groups.html.

[5] Amazon. 2019. AWS EC2 Pricing. https://aws.amazon.com/ec2/pricing/on-
demand/.

[6] Baidu. 2017. FPGA instances. https://www.xilinx.com/news/press/2017/baidu-
deploys-xilinx-fpgas-in-new-public-cloud-acceleration-services.html.

[7] S. S. Banerjee, M. el-Hadedy, C. Y. Tan, Z. T. Kalbarczyk, S. Lumetta, and R. K. Iyer.
2017. On accelerating pair-HMM computations in programmable hardware. In
2017 27th International Conference on Field Programmable Logic and Applications
(FPL). 1–8.

[8] BCM. 2018. https://www.hgsc.bcm.edu/resources.
[9] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,

S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov, M.
Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger. 2016. A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1–13.

[10] Kristian Cibulskis, Michael S Lawrence, Scott L Carter, Andrey Sivachenko, David
Jaffe, Carrie Sougnez, Stacey Gabriel, Matthew Meyerson, Eric S Lander, and
Gad Getz. 2013. Sensitive detection of somatic point mutations in impure and
heterogeneous cancer samples. Nature biotechnology 31, 3 (2013), 213–219.

[11] J. Cong, Z. Fang, M. Huang, L. Wang, and D. Wu. 2018. CPU-FPGA Coscheduling
for Big Data Applications. IEEE Design Test 35, 1 (2018), 16–22.

[12] Jason Cong, Muhuan Huang, Di Wu, and Cody Hao Yu. 2016. Heterogeneous
Datacenters: Options and Opportunities. In Proceedings of the 53rd Annual Design
Automation Conference. 1–6.

[13] Jason Cong, Peng Wei, and Cody Hao Yu. 2018. From {JVM} to {FPGA}: Bridg-
ing Abstraction Hierarchy via Optimized Deep Pipelining. In 10th {USENIX}
Workshop on Hot Topics in Cloud Computing (HotCloud 18).

[14] Christina Delimitrou and Christos Kozyrakis. 2016. HCloud: Resource-Efficient
Provisioning in Shared Cloud Systems. (2016), 473–488.

[15] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. 1998.
Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press.

[16] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accel-
erated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). USENIX Association,
Renton, WA, 51–66.

[17] Gereon Führ, Seyit Halil Hamurcu, Diego Pala, Thomas Grass, Rainer Leupers,
Gerd Ascheid, and Juan Fernando Eusse. 2019. Automatic Energy-Minimized
HW/SW Partitioning for FPGA-Accelerated MPSoCs. IEEE Embedded Systems
Letters 11, 3 (2019), 93–96.

[18] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gregory R Ganger, and Phillip B
Gibbons. 2018. Tributary: spot-dancing for elastic services with latency SLOs. In
2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18). 1–14.

[19] Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi, Tyson
Condie, and Jason Cong. 2016. Programming and Runtime Support to Blaze
FPGA Accelerator Deployment at Datacenter Scale. In Proceedings of the Seventh
ACM Symposium on Cloud Computing. 456–469.

[20] Sitao Huang, Li-Wen Chang, Izzat El Hajj, Simon Garcia de Gonzalo, Juan Gómez-
Luna, Sai Rahul Chalamalasetti, Mohamed El-Hadedy, Dejan Milojicic, Onur
Mutlu, Deming Chen, and Wen-mei Hwu. 2019. Analysis and Modeling of
Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures.
In Proceedings of the 2019 ACM/SPEC International Conference on Performance
Engineering (Mumbai, India) (ICPE ’19). Association for Computing Machinery,

New York, NY, USA, 79–90.
[21] Sitao Huang, Gowthami Jayashri Manikandan, Anand Ramachandran, Kyle Rup-

now, Wen-mei W Hwu, and Deming Chen. 2017. Hardware acceleration of
the pair-HMM algorithm for DNA variant calling. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 275–
284.

[22] Huawei. 2019. Elastic Cloud Server Price Details. https://www.huaweicloud.com/
en-us/price_detail.html#/ecs_detail.

[23] Huawei. 2019. Huawei FPGA-accelerated Cloud Server. https://www.
huaweicloud.com/en-us/product/fcs.html.

[24] Illumina. 2019. https://support.illumina.com/downloads.html.
[25] Broad Institute. 2019. Genome Analysis Toolkit HaplotypeCaller.

https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/
org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php.

[26] Anca Iordache, Guillaume Pierre, Peter Sanders, Jose Gabriel de F. Coutinho,
and Mark Stillwell. 2016. High Performance in the Cloud with FPGA Groups. In
Proceedings of the 9th International Conference on Utility and Cloud Computing
(Shanghai, China) (UCC ’16). Association for Computing Machinery, New York,
NY, USA, 1–10.

[27] Megumi Ito and Moriyoshi Ohara. 2016. A power-efficient FPGA accelerator:
Systolic array with cache-coherent interface for pair-HMM algorithm. In 2016
IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS XIX). IEEE,
1–3.

[28] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta: Heterogeneous
Cloud Storage Configuration for Data Analytics. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA, 759–773.

[29] Christopher Kohlhoff. 2016. Boost. asio. (2016).
[30] M. Mao and M. Humphrey. 2011. Auto-scaling to minimize cost and meet appli-

cation deadlines in cloud workflows. In SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–12.

[31] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian
Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel,
Mark Daly, and Mark A DePristo. 2010. The Genome Analysis Toolkit: a MapRe-
duce framework for analyzing next-generation DNA sequencing data. Genome
Research 20, 9 (2010), 1297–1303.

[32] Chris Rauer andN Finamore. 2016. Accelerating Genomics Researchwith OpenCL
and FPGAs. Altera, Now Part of Intel, Tech. Rep (2016).

[33] D. Sampietro, C. Crippa, L. Di Tucci, E. Del Sozzo, and M. D. Santambrogio. 2018.
FPGA-based PairHMM Forward Algorithm for DNA Variant Calling. In 2018 IEEE
29th International Conference on Application-specific Systems, Architectures and
Processors (ASAP). 1–8.

[34] Standford. 2016. http://jimb.stanford.edu/giab-resources/.
[35] Naif Tarafdar, Thomas Lin, Eric Fukuda, Hadi Bannazadeh, Alberto Leon-Garcia,

and Paul Chow. 2017. Enabling Flexible Network FPGA Clusters in a Hetero-
geneous Cloud Data Center. In Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (Monterey, California,
USA) (FPGA ’17). Association for Computing Machinery, New York, NY, USA,
237–246.

[36] Prashanth Thinakaran, Jashwant Raj, Bikash Sharma, Mahmut T. Kandemir,
and Chita R. Das. 2018. The Curious Case of Container Orchestration and
Scheduling in GPU-Based Datacenters. In Proceedings of the ACM Symposium on
Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). Association for Computing
Machinery, New York, NY, USA, 524.

[37] UCLA-VAST. 2016. Blaze: Deploying Accelerators at Datacenter Scale. https:
//github.com/UCLA-VAST/blaze.

[38] Y. Ukidave, X. Li, and D. Kaeli. 2016. Mystic: Predictive Scheduling for GPU
Based Cloud Servers Using Machine Learning. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 353–362.

[39] Z. Wang, S. Zhang, B. He, and W. Zhang. 2016. Melia: A MapReduce Framework
on OpenCL-Based FPGAs. IEEE Transactions on Parallel and Distributed Systems
27, 12 (2016), 3547–3560.

[40] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez, Burton Smith, and
Randy H Katz. 2017. Selecting the Best VM across Multiple Public Clouds: A Data-
Driven Performance Modeling Approach. In Proceedings of the 2017 Symposium
on Cloud Computing. 452–465.

[41] Peipei Zhou, Zhenyuan Ruan, Zhenman Fang, Megan Shand, David Roazen,
and Jason Cong. 2018. Doppio: I/O-Aware Performance Analysis, Modeling and
Optimization for In-Memory Computing Framework. In 2018 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
22–32.

https://www.alibabacloud.com/help/doc-detail/108504.htm
https://www.alibabacloud.com/help/doc-detail/108504.htm
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://www.xilinx.com/news/press/2017/baidu-deploys-xilinx-fpgas-in-new-public-cloud-acceleration-services.html
https://www.xilinx.com/news/press/2017/baidu-deploys-xilinx-fpgas-in-new-public-cloud-acceleration-services.html
https://www.hgsc.bcm.edu/resources
https://www.huaweicloud.com/en-us/price_detail.html##/ecs_detail
https://www.huaweicloud.com/en-us/price_detail.html##/ecs_detail
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.huaweicloud.com/en-us/product/fcs.html
https://support.illumina.com/downloads.html
https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/3.8-0/org_broadinstitute_gatk_tools_walkers_haplotypecaller_HaplotypeCaller.php
http://jimb.stanford.edu/giab-resources/
https://github.com/UCLA-VAST/blaze
https://github.com/UCLA-VAST/blaze

	Abstract
	1 Introduction
	2 Analysis and Modeling
	3 Mocha Framework
	3.1 CPU-FPGA Integration and Cost Modeling
	3.2 Cost Model Realization
	3.3 Mocha Runtime

	4 Experimental Evaluations
	5 Related Work
	6 Conclusion
	7 Acknowledgment
	References

