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Multi-head self-attention (attention mechanism) has been employed in a variety of fields such as machine

translation, language modeling, and image processing due to its superiority in feature extraction and sequen-

tial data analysis. This is benefited from a large number of parameters and sophisticated model architecture

behind the attention mechanism. To efficiently deploy attention mechanism on resource-constrained devices,

existing works propose to reduce the model size by building a customized smaller model or compressing a

big standard model. A customized smaller model is usually optimized for the specific task and needs effort

in model parameters exploration. Model compression reduces model size without hurting the model archi-

tecture robustness, which can be efficiently applied to different tasks. The compressed weights in the model

are usually regularly shaped (e.g. rectangle) but the dimension sizes vary (e.g. differs in rectangle height and

width). Such compressed attention mechanism can be efficiently deployed on CPU/GPU platforms as their

memory and computing resources can be flexibly assigned with demand. However, for Field Programmable

Gate Arrays (FPGAs), the data buffer allocation and computing kernel are fixed at run time to achieve max-

imum energy efficiency. After compression, weights are much smaller and different in size, which leads to

inefficient utilization of FPGA on-chip buffer. Moreover, the different weight heights and widths may lead

to inefficient FPGA computing kernel execution. Due to the large number of weights in the attention mech-

anism, building a unique buffer and computing kernel for each compressed weight on FPGA is not feasible.

In this work, we jointly consider the compression impact on buffer allocation and the required computing

kernel during the attention mechanism compressing. A novel structural pruning method with memory foot-

print awareness is proposed and the associated accelerator on FPGA is designed. The experimental results

show that our work can compress Transformer (an attention mechanism based model) by 95x. The developed

accelerator can fully utilize the FPGA resource, processing the sparse attention mechanism with the run-time

throughput performance of 1.87 Tops in ZCU102 FPGA.

CCS Concepts: • Hardware→Hardware-software codesign; • Computing methodologies→Machine

translation; • Computer systems organization→ Embedded hardware;
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1 INTRODUCTION

Attention mechanism has been widely adopted as the backbone in neural network models such as
Transformer [1] in machine translation, BERT [2] in language modeling, GPT [3] in the general
language model, and DETR [4] in image processing. The size of the attention-based model ranges
from million bytes (Transformer) to billion (GPT-3) bytes.

While large scale attention-based neural network models are developed to break the records in
the Natural Language Processing (NLP) tasks, the computations become more and more intensive.
As the majority of the computations in the attention mechanism are matrix multiplications, it has
been reported that 10 Giga multiply-accumulate operations (MAC) are needed when translating
a short sentence via Transformer [5]. With such a large number of weights and MACs, a large
memory footprint and high computational cost are demanded when deploying the mechanism.

Existing works proposed to structurally prune the model weight to keep computing efficiency.
The memory footprint and workload are largely reduced after pruning. Such method focuses on
removing the redundant weights without hurting the robustness of the model architecture, which
also avoids the efforts in proposing new models. The efficient pruning method for attention mech-
anism has been observed in TransformerZip [6], HAT [7], and FTRANS [8]. TransformerZip [6]
utilizes magnitude-based pruning to reduce weight size; HAT [7] crops the weights in both dimen-
sions to reduce weight size and form regularly shaped weights. FTRANS [8] utilized block-circulant
matrix to replace selected weights, which reduces the model memory footprint.

When programming and deploying weight-pruned models in the inference stage on generic
processors, e.g., CPUs and GPUs, it incurs little effort. However, it poses significant programming
efforts and design challenges on hardware accelerators like FPGA for the following two reasons:
First, the dimension size of different weights can be arbitrary after compression as the significance
or absolute value differs among the weight elements. It is challenging to efficiently allocate on-
chip buffers for different shapes of weight under on-chip hardware constraints to maximize buffer
utilization and improve inference throughput. Second, the FPGA accelerator is usually computing
pattern-specific. While the compression causes arbitrary-sized weight and its associate computing
pattern, building a dedicated computing kernel for each pattern is not feasible. As buffer allocation
and computing kernel design on FPGAs are usually fixed in size and limited in number for specific
computations, these two issues may severely hurt the FPGA efficiency. Therefore, the attention
mechanism’s memory footprint and hardware computing pattern should be jointly considered
and optimized when deploying the attention mechanism on FPGAs.

In this paper, we propose a novel algorithm-hardware co-design framework to address these
issues. To illustrate the framework, we take Transformer as a vehicle since it is a complete set
of attention mechanism modules. First, in the algorithm design, we propose a novel structural
weight pruning method for training Transformer models on generic processors by applying tighter
restrictions on both weight shape and size. The size variation among the compressed weights is
controlled in this step. Then, in hardware design, we propose a unified computing pattern that
can process the sparse matrix multiplications in deploying Transformer inference stage. Based on
the compressed model and the unified computing pattern, we develop an FPGA accelerator that
can fully utilize FPGA resources and achieve 1.87 Tops (Tera Operations Per Second) throughput
performance. Our contributions are summarized as follows:
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• Memory footprint aware compression. We propose a novel pruning method that prunes
the weight column by column, leaving the weight height unchanged. During the compres-
sion, the size variation among weights is controlled and minimized. After adequately prun-
ing the weights, the compressed Transformer is then trained and applied with post-training
quantization, forming a sparse INT8 Transformer.
• Unified computing pattern. We propose a novel computing pattern for the compressed

model that converts the MACs in Transformer to unified element-wise vector multiplica-
tions and additions. The computing pattern naturally eliminates the unnecessary computa-
tion caused by sparsity. In addition to its arithmetic efficiency, the hardware efficiency is
largely improved by packing multiple operations into a single FPGA DSP with the comput-
ing pattern.
• Efficient FPGA accelerator. We build an accelerator with pipelined processing element

(PE) array according to the computing pattern. The accelerator efficiently processes the
stream-in data in high parallelism. The accelerator can be recursively called to process the
matrices in Transformer with near-zero resource under-utilization and high throughput.
• Performance validation and accelerator implementation on FPGA. We validate that

the proposed compression method can compress a Transformer model by 95X without ac-
curacy loss. The proposed accelerator is deployed on Xilinx ZCU102 FPGA, achieving 99%
computing resource utilization and run-time throughput at 1.87 Tops.

The remainder of the paper is organized as follows. Section 2 and Section 3 presents the
background of the attention mechanism and the related works. Section 4 presents the moti-
vation of our proposed algorithm-hardware co-design framework for the attention mechanism.
Section 5 presents the memory footprint aware compression algorithm. Section 6 presents the
unified computing pattern and its benefits. Section 7 presents the accelerator hardware design.
Section 8 presents the performance, resource, and energy efficiency evaluation of our proposed
framework.

2 BACKGROUND

Attention mechanism has drawn the focus of the NLP community in recent years. With the capabil-
ity of processing the long sequence in parallel, the attention mechanism becomes the most popular
method in sequence modeling. The Transformer is the first self-attention based model. GPT series,
BERT, and DETR further extend the model capacity and improve the precision in the NLP tasks
including machine translation, information extraction, conversational agents, etc. However, they
all share the same attention mechanism as Transformer. In this section, we take Transformer as
the demonstration model to study the attention mechanism.

The core of the attention mechanism is self-attention, which is also called scaled dot-product.
The scaled dot-product is shown in Equation (1) [1], in which, an input X in ∈ RN×dmodel is
mapped to an output Oattn ∈ RN×dk via Query (Q), Key (K ), and Value (V ). The Q , K , and V are
intermediate results that are acquired by multiplyingX in with corresponding weightsQw ,Kw , and
Vw in the same size (w ∈ Rdmodel×dk ). Therefore, the computations can be roughly divided into two
parts: the Q , K , andV mapping and scaled dot-product as shown in Figure 1(a). In a self-attention,
N and dmodel are determined by input dataset and dk is one of the model hyperparameters that
vary in different models. The X in multiplies with corresponding weights to acquire Q , K , and
V . Then, the intermediate result Q multiplies with the transpose of K (KT ). After division and
softmax, the result QK multiplies with V to get Oattn . The overview of self-attention operations
is shown in Figure 1(b), in which, the “linear” in Figure 1(a) is denoted by MatMul. The multiple
parallel instances of self-attention form multi-head self-attention. Its main computations and the
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Fig. 1. (a) Computations in self-attention. (b) Single head self-attention. (c) Multi-head self-attention.

data flow of the multiple heads is shown in Figure 1(c). Multiple heads share the same input X in

but own privateQw ,Kw ,Vw . Generally,Qw ,Kw ,Vw in an encoder/decoder layer are concatenated
in width direction in computation, forming Qw

layer
,Kw

layer
,Vw

layer
∈ Rdmodel×(Nhead ∗dk ). After the

computation for each head, the individual head output Oattn are concatenated and mapped to
multi-head output Ohead via weight Ow .

Oattn = so f tmax

(
QKT

√
dk

)
V (1)

The attention mechanism is further assembled as an encoder and decoder, forming the main
blocks of a Transformer as shown in Figure 2. In an encoder, addition&normalization and feed-
forward network (FFN) are also placed. The FFN consists of two stacked linear modules. Compared
to encoder in model architecture, decoder has an extra masked-attention module to build the data
dependency in the output sequence. In [1], the dk is 64, the dmodel is 512, the number of heads
(Nhead ) is 8, the number of the encoders (Nenc ) is 6, and the number of the decoders (Ndec ) is 6.
The encoders are sequentially connected and decoders are connected likewise. The last encoder
feeds the intermediate data into the decoders. The input data X = (x1,x2, ...,xN ) is embedded into
X in and processed by encoders first. The intermediate representation Z in ∈ RN×dmodel generated
by the last encoder is further fed into Ndec decoders.

As a result, the weights in a Transformer encoder/decoder layer can be summarized in six types:
Qw

layer
,Kw

layer
,Vw

layer
∈ Rdmodel×(Nhead ∗dk ), Ow ∈ Rdmodel×dmodel , FFN 1w ∈ Rdmodel×4dmodel , and

FFN 2w ∈ R4dmodel×dmodel . With the multi-head self-attention, encoders, and decoders, the number
of weights can be up to hundreds and the total memory footprint size for the Transformer is 176
MB [1]. The large size of memory requirement and various sizes of the weights make it challenging
when deploying Transformer on embedded devices as the memory size and computing resource
are usually limited on such platforms.

3 RELATED WORKS

To reduce the Transformer weight size, existing works focus on compressing the weights Qw ,
Kw , Vw , and FFNw . In compression, structured pruning is widely adopted as it forms a regularly
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Fig. 2. Transformer encoder and decoder.

shaped weight that is efficient in computing [6–11]. Wang et al. [7] proposed structured pruning
for Transformer targeting on CPU and GPU. By adopting neural architecture search, it structurally
cropped each weight in Transformer and generated weights in regular shape but with arbitrary
dimension size. The compressed weights Qw , Kw , Vw , and FFNw in [7] are shown in Figure 3(a)
and (c). The pruned weight elements are white-colored. While the model size can be efficiently
reduced, the compressed weigh size differs significantly. In computation, such a method heavily
relies on the memory and computing resource flexibility of generic processors.

Li et al. [8] utilized block-circulant matrix to replace selected weights, efficiently reducing the
model size. However, extra FFT processing kernel is needed. It also builds dedicated computing
kernels for weight Qw , Kw , and Vw on FPGA, leading to heterogeneous computing kernels. The
overview of accelerator [8] is shown in Figure 4(a). In this design, much effort in building het-
erogeneous computing elements and balancing the pipeline stage is observed while its system
performance is inferior. Xilinx [12] accelerated the matrix multiplications in attention mechanism
on an industry-level FPGA with high bandwidth memory (HBM). The data movement overhead
caused by large model size is relieved by HBM. During computing, a DSP systolic array is recur-
sively invoked to process the matrix multiplications. However, the HBM technique is usually not
available in embedded FPGAs. The large model size still needs to be addressed before deploying
on embedded FPGAs.

When accelerating the large deep learning models, recursively calling the accelerator is efficient
for resource constraint FPGA. Such mechanism is widely adopted in Convolution Neural Network
(CNN) accelerator designs [13–20]. Such designs usually rely on the processing element (PE) array
as the computing kernel. In this way, the accelerator can be re-purposed for different CNN appli-
cations. Two typical designs are shown in Figure 4(b) and (c). Design [14] proposed a throughput
optimized accelerator that builds a PE as a multiply-accumulate unit which is shown in Figure 4(b).
The PEs operate as a systolic array, in which, each PE has fixed communication availability with
its neighbor PE. Design [20] proposed a latency and energy-optimized in-sensor accelerator which
builds a PE as a group of multiply-accumulate. The data flow is further optimized to achieve low
latency. Despite the existing CNN accelerators achieve superior performance in throughput or la-
tency, they can not be directly applied in Transformer applications due to the significant difference
in model architecture. How to efficiently accelerate Transformer application on FPGA is still not
fully solved.

4 MOTIVATION EXAMPLE

The existing works proposed efficient methods to address the large memory footprint size of
weights. However, the weight compression and computation are not jointly considered, which
leads to inefficient utilization of on-chip memory and compute resources, resulting in computing
inefficiency. Figure 3(a) and (b) show the compression result of one self-attention in [7]. The in-
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Fig. 3. Compression visualization in related works. (a) Compressed weights QW ,KW ,VW and its result Q,

K, and V. (b) Compressed Q ∗ KT and QK ∗V . (c) Compressed FFN layers.

Fig. 4. Existing accelerator architectures. (a) FTRANs accelerator [8]. (b) Eyeriss CNN accelerator [14].

(c) In-sensor CNN accelerator [20].

termediate results related to the pruned weights are also white-colored for better illustration. [7]
crops the columns ofQw , Kw , andVw . However, the width of compressed weight is not controlled,
which also directly influences the MAC size of Q ∗ KT as shown in Figure 3(b). The linear layer
weights in FFN are even arbitrary in both height and width which are shown in Figure 3(c). As
an attention mechanism consists of 8 heads and the Transformer consists of 6 encoders and 6 de-
coders, the number shapes of the compressed weights and the associated computation size can
be as high as several hundred. Such compression method causes severe buffer inefficient usage on
FPGA. Since MAC is usually executed in parallel on FPGAs, the suitable computing kernel size also
varies for those compressed weights. As a result, the solution adopted in [8] will cause extreme
unbalance computing kernel design and difficult pipeline arrangement. The accelerator system
performance may be largely degraded.

In this work, targeting on machine translation task in NLP domain, we propose to compress the
Transformer model with weight size awareness, leaving weights in similar size. The similarity of
the compressed weights brings more efficient FPGA buffer utilization. A novel computing pattern
is also proposed to address the computing heterogeneity and inefficiency in the Transformer after
compression. With the compression methodology and the unified computing pattern, an accelera-
tor is designed to accelerate the sparse matrix multiplications of Transformer (‘MatMul’ and Linear
layers in Figure 1 and Figure 2). The accelerator is recursively called in a mode of streaming in,
computing, and streaming out. In this way, the accelerator with the fixed buffer and the unified
computing core is efficient to handle the deployment of sparse Transformer.

5 MODEL COMPRESSION

In this section, we present a novel compression method that structurally prunes the weights. This
method forms compressed weight in similar size to achieve efficient deployment of the buffer
and computing engine. The pruned model can maintain accuracy when quantizing weight from
floating-point to INT8 while reducing memory footprint and MACs significantly. The compression
involves two aspects: the weight significance analysis and memory footprint aware pruning.
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5.1 Weight Significance Analysis

The weight significance is first acquired according to the means of “Winning Ticket Hypothe-
sis’ [21]. ‘Winning ticket’ theory proves that the sub-network of a model can have compara-
ble accuracy by correctly removing the smallest-magnitude weights and training from original
initialization (one-shot pruning [21]). The ‘winning ticket’ theory has been adopted and validated
in the existing works for CNN models [21–24], in which, [22] identifies Normalization is efficient
in identifying the CNN weight magnitude channel-wise. However, Transformer has a different ar-
chitecture with CNN models, the existing techniques can not be directly applied to Transformer. In
this work, we propose a novel ‘winning ticket’ finder, in which, layer normalization (LayerNorm)
[25] is adopted to firstly analyze the weight significance in column-wise.

ALGORITHM 1: Weight significance analysis

Input: dataset (data), Transformer (model ),
Transformer total layer L, LayerNorm.

Output:modelnorm .

modelnorm =model ;

for l ← 1 to L do

modell =model ;

formodule ∈modell .layer [l] do

if module .weight then
module .attach(LayerNorm);

end

end

while LayerNorm∗ ∈modell Not Converged do

modell .train;

end

modelnorm .layer [l] =modell .layer [l];
end

The developed analysis workflow is shown in Algorithm 1. LayerNorm is exclusively applied to
one encoder or one decoder layer at a time (denoted as model .layer in the algorithm), in which,
LayerNorm is attached to any matrix multiplication that contains weight (module .weiдht in the
algorithm) in the layer. The Transformer is then trained until the scaling factors γ in the newly
attached LayerNorms are converged. The converged γ is collected as the column significance indi-
cator for the weight. After repeatedly applying LayerNorms to each encoder and decoder layer
and training the Transformer, the scaling factors γ in all of the attached LayerNorms are col-
lected and stored in a separated modelmodelnorm . The visualization of an encoder before and after
LayerNorm attachment is shown in Figure 5(a) and (b), in which, the newly attached LayerNorm
is labeled as LayerNorm∗.

The LayerNorm takes a vector or a matrix as input and scales the row elements individually
which is shown in Equation (2). In a LayerNorm, the row elements expectation E and variationVar
are employed; the scaling factors γ and β are dedicated for each row element but shared among
rows. As visualized in Figure 5(c), a pair of theγ and β can scale a column of the inputs up or down.
When attaching the LayerNorm to matrix multiplication, a column of the results will be normalized
by the same γ and β . If looking backward, which is shown in Figure 5(d), a column of the result is
determined by the corresponding column of weight. Therefore, a pair of the scaling factor γ and β
can reflect the significance of the corresponding column of the weight. As γ dominates the scaling
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Fig. 5. (a) Encoder without LayerNorm insertion. (b) LayerNorm insertion of the encoder. (c) LayerNorm

scaling factor γ and β . (d) Weight significance based on γ .

operation, we take γ value as a significance indicator. The scaling degree can be reflected by γ
value. The weight significance can be ranked via its corresponding γ while weight with larger γ is
more important. According to the significance ranking, the columns of the weights with smaller
γ will be pruned. In the next step, the method to prune the weight in columns-wise with memory
footprint awareness will be illustrated.

xscaled =
x − E[x]√
Var [x] + ϵ

∗ γ + β (2)

5.2 Pruning Strategy

To ensure the hardware efficiency after pruning, a two-stage one-shot pruning is performed:
coarse-grained pruning to keep the weights of the same type in similar size; fine-tune to adequately
remove the redundant weights without losing accuracy. In each stage, pruning and training are
pairwise performed until the model is adequately pruned within the stage.
Coarse-grained: the coarse-grained pruning prunes each of the weights in the Transformer with
the same ratio. During this stage, the memory footprint size of the weights is evenly reduced.
Based on the dataset data, the Transformermodel , the collected γ data inmodelnorm , and a pre-set
pruning speed incrcoarse , coarse-grained pruning will determine the maximum even pruning ratio.
As shown in Algorithm 2, the baseline accuracy is acquired first. Then, the pruning ratio increases
by incrcoarse from 0%. At each pruning ratio, GetIndex will locate the index of γ ranging in the
least ratio% in a LayerNorm. Such index is equivalent to the index of weight columns. According
to the selected index, Mask will mask the indexed weight columns to enable zero gradient descent
during training. The increment of ratio stops when the sparse model accuracy drops below the
baseline accuracy (accuracybase ). After this stage, the maximum size of each weight is bounded.
Fine-tune: In this stage, the masked columns in stage one are considered as already been re-
moved in both model and modelnorm . As shown in Algorithm 3, fine-tune takes data, coarsely
pruned model , accuracybase , modelnorm , and incrf ine as input, performing across layer pruning
based on the rest γ . In fine-tune, encoders and decoders are pruned separately. Algorithm 3 takes
encoders as an example since encoder and decoder are similar in architecture. The γ of Layer-
Norms in modelnorm for the same type weights cross all encoder layers are grouped first. For ex-
ample, the γ forQw (layer .module .LayerNorm in the algorithm) in six encoder layers are grouped.
After collecting the cross-layer γ for each type of weight, γ for corresponding weights are stored
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ALGORITHM 2: Coarse-grained pruning

Input: data,model ,modelnorm , incrcoarse .

Output: Prunedmodel , accuracybase , ratiocoarse .

model .train;

accuracybase =model .accuracy;

ratio = 0%;

while True do

ratio = ratio + incrcoarse ;

for l ← 1 to L do

Normlayer =modelnorm .layer [l];
formodule ∈model .layer [l] do

if module .weight then

GetIndex(Normlayer .module .LayerNorm, ratio);
Mask(model .layer [l]).module .weiдht);

end

end

end

model .train;

if model .accuracy < accuracybase then

ratiocoarse = ratio − incrcoarse ;

break;
end

end

/* GetIndex: locating the index of γ ranging in the least ratio percent. */

/* Mask: masking the selected column to ensure zero gradient descent in training. */

in EncQnorm ,EncKnorm ,EncVnorm ,EncOnorm ,EncFn1norm , and EncFn2norm . The pruning and training
will be executed similarly as in Algorithm 2. However, in this algorithm, GetIndex will locate the
index of rest γ ranging in the least ratio% in the group. For example, if the model consists of six
encoders, the γ in all of the encoders are compared. Mask also performs cross-layer masking in
this stage. After this stage, the Transformer model size is further reduced with slight size variation.

The two-stage pruning adequately prunes the model without accuracy loss. The pruned weights
in Transformer are illustrated in Figure 6(a), (b), (c), and (d), in which, the pruned weights and
corresponding results are white-colored for better illustration. As a result, the weights in same
type (e.g., Qw

layer
,Kw

layer
,Vw

layer
,Ow , FFN 1w , and FFN 2w ) in the Transformer will be in similar size.

This will maximize the utilization efficiency of the data buffer on hardware. The well-trained sparse
model can be directly quantized to INT8 data via dynamic quantization with Pytorch [26] without
accuracy loss. After quantization, the model size can be further reduced by 4x, which benefits a
smaller memory footprint and more efficient hardware computing.

6 UNIFIED COMPUTING PATTERN DESIGN

In this section, we first present the optimization objectives for the computations in compressed
Transformer. Then, the proposed unified computing pattern and its benefits are presented.

6.1 Optimization Objectives

After compression, the memory footprint and workload can be efficiently reduced. Though the
proposed compression method structurally prunes the weight which minimizes the impacts to
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ALGORITHM 3: Fine-tune pruning

Input: data, coarsely prunedmodel , accuracybase ,modelnorm , incrf ine .

Output: Fine prunedmodel .
/* Encoders grouping.; */

EncQnorm ; EncKnorm ; EncVnorm ; EncOnorm ; EncFn1norm ; EncFn2norm ;

for layer in modelnorm .EncoderLayers do

formodule ∈ layer do

if module .weight then

switch module.Name do

case Q do
EncQnorm .append (layer .module .LayerNorm);

case K do
EncKnorm .append (layer .module .LayerNorm);

case V do
EncVnorm .append (layer .module .LayerNorm);

case O do
EncOnorm .append (layer .module .LayerNorm);

case Fn1 do
EncFn1norm .append (layer .module .LayerNorm);

case Fn2 do
EncFn2norm .append (layer .module .LayerNorm);

end

end

end

end

/* End Encoders grouping.; */

/* Decoders grouping is similar to encoder (skipped).; */

...;

/* End Decoders grouping.; */

ratio = 0%;

while True do

ratio = ratio + incrf ine ;

/* Encoders tuning; */
Get Index (EncQnorm, r atio); Mask (model .EncQ .weiдht );
Get Index (EncKnorm, r atio); Mask (model .EncK .weiдht );
Get Index (EncVnorm, r atio); Mask (model .EncV .weiдht );
Get Index (EncOnorm, r atio); Mask (model .EncO .weiдht );
Get Index (EncF n1norm, r atio); Mask (model .EncF n1.weiдht );
Get Index (EncF n2norm, r atio); Mask (model .EncF n2.weiдht );
/* Decoders tuning skipped; */

/* End tuning; */

model .train;

if model .accuracy < accuracy then

ratio = ratio − incrf ine ;

break;
end

end

/* GetIndex: locating the index of γ ranging in the least ratio% in the group. */

/* Mask: masking the selected column in the group to ensure zero gradient descent in

training. */
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Fig. 6. (a) Sparse pattern of weight Q, K, and V in the proposed technique. (b) Sparse pattern of Q ∗ KT .

(c) Sparse pattern ofQK ∗V . (d) Sparse pattern in FFN operations. (e) INT8 multiplication encoding overview.

weight shape and the size difference among weights, the computing inefficiency caused by diverse
computation sizes is still unresolved. And the side effect in computation caused by sparsity exists.
In summary, there are four challenges in accelerating the sparse Transformer.
O1: Multi-size multiply-accumulate: as shown in Figure 6(a), (b), (c), and (d), different sizes
of MAC (dmodel , dk , N , and 4dmodel ) still exist in corresponding matrix multiplications. As the
value of such parameters differs significantly (dmodel = 512, dk = 64, N = 100 [1]), if the hardware
multiply-accumulate kernel is not carefully designed, mapping different sizes of MAC in a network
onto the same piece of hardware may lead to unsatisfactory overall performance.
O2: Inefficient INT8 computation: DSP components in modern FPGAs are usually designed
with high bitwidths such as 27b ∗ 18b → 45b [27], which is redundant for an INT8 operation. The
DSP can only be fully utilized by encoding INT8 multiplication as ((a <<) + b) ∗ c [27] which is
shown in Figure 6(e). However, the shared multiplier c for multiplicands a and b do not exist in
the conventional multiply-accumulate.
O3: Multiplying with zero: since bothQ and K are sparse in columns, themultiplyinд with zero
occurs when multiplyingQ with KT as illustrated in Figure 6(b). When the compression ratio goes
higher,multiplyinд with zero can cause severe under-utilization of computing resources.
O4: Compressed matrix restoration: though the memory footprint can be reduced by only keep-
ing the non-pruned weights, the sparse result needs to be restored to ensure the data consistency
between matrices such as Q ∗ KT . The matrix restoration may diminish the benefit of the smaller
memory footprint after model compression.

6.2 Computing Pattern Optimization

With the observation that compression forms fixed height (N ) for multiplicand of the matrix
multiplications in the model, the MAC of different sizes can be replaced by a sequence of uni-
form element-wise vector multiplication and addition. The unified computing pattern is shown in
Figure 7, in which IN and WEI represents the multiplicand and multiplier, and OUT represents
the product. OUT is computed column by column. Each column of OUT is partially computed by
multiplying an element inWEI and its corresponding column of IN . The accumulation of column
one is shown in this Figure (the element is fan-out to the vector). The pseudocode of this process
is also shown in Figure 8, where the inner loop computes the partial result of a column in OUT
and can execute in parallel on FPGA by loop unrolling. After the iterations of the middle loop,

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 71. Publication date: September 2021.



71:12 X. Zhang et al.

Fig. 7. Unified computing pattern in element-wise multiplication and addition.

Fig. 8. The pseudocode of the computing pattern optimization in a manner of loop iteration.

Fig. 9. Multiplicand and multiplier data alignment in (a) sparse Q ∗ KT (b) sparse linear layer.

a column of OUT is computed. As highlighted in the loop iterations, the iterations of the inner
loop are the height of the multiplicand which is fixed (N ) cross all the matrix multiplications in
Transformer; theWEI [rowwei ][colwei ] is a constant in the inner loop iterations. In this way, O1 and
O2 are achieved. As for O1, the MAC of different sizes is unified to single size element-wise vector
multiplication first (inner loop). The accumulations are converted to single-size element-wise ad-
dition (middle loop). As for O2, as the elementWEI [rowwei ][colwei ] is constant in the inner loop
iterations, it is shared by the multiplicand vector element. Therefore, the DSP bitwidth can be fully
utilized by encoding the input vector as ((a <<) + b) ∗WEI [rowwei ][colwei ].

O3 and O4 are naturally eliminated by the proposed computing pattern since computations
are column-based and the pruned columns are not stored. Benefited from the computing pattern,
the memory footprint can be further reduced as the column of the multiplicand needs to align
with the multiplier’s row. The corresponding two cases are shown in Figure 9. In this figure, the
pruned columns in the multiplicand and multiplier are labeled in number and letter, respectively.
Figure 9(a) illustrates the alignment betweenQ andK . AsQ’s column needs to align withKT ’s row
element to guarantee one-to-one mapping, columns a and b of Q are further removed; rows 1 and
2 of KT are further removed. Case (b) shows FFN 2, in which, the columns a and b of FFN 2w were
already pruned. Its rows 1 and 2 are further removed to align with its multiplicand’s columns. As
the sparsity is determined after compression, the alignment process can also be executed off-line
before inference. Thus, the memory footprint and workload can be further reduced.
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Fig. 10. (a) The PE1 architecture and PE1 mapping to the multiplication in the unified computing pattern.

(b) The PE2 architecture and PE2 mapping to the addition in the unified computing pattern.

7 ACCELERATOR DESIGN

In this section, we first present the accelerator architecture which includes processing element,
computing core, buffer allocation, buffer partition, and accelerator running schedule. Then, an an-
alytical model is built to determine the accelerator parameters and predict the system performance.

7.1 Accelerator Architecture

Processing element. The diverse computations are unified into patterns: element-wise vector
multiplication and addition, which can be conducted by only two types of Processing Elements
(PE). The element-wise vector multiplication between a multiplicand’s column and an element of
the multiplier can be executed via multiplication unit PE1, in which, the parallelism ofN (N = RI N )
can be performed (illustrated by the inner loop of Figure 8). The architecture of PE1 and PE1 to IN
andWEI access is shown in Figure 10(a). In PE1, the multiplications are mainly implemented via
FPGA DSPs and every two of the multiplications are packed into one DSP according to the INT8
data packing mechanism illustrated in Section 6.2. The partial results regarding all multiplicand’s
columns can be accumulated via addition unit PE2 in the parallelism of N as shown in Figure 10(b).
PE2 is implemented via FPGA LUT as INT8 addition is more efficient with LUT resources. More
PE1 can be built with FPGA LUT resource as long as the LUT resource is abundant. By building
and connecting multiple PE1 and PE2, the unified computations can be efficiently processed.
Computing core. As the height of the multiplicand of matrix multiplications in Transformer is
fixed at N , a homogeneous PE1 array and homogeneous PE2 array are utilized to build a multi-
stage pipeline computing core. The PE array processes the unified computations in high paral-
lelism. The multiplicand’s columns can be processed simultaneously via PE1 array and accumu-
lated by the following tree-structured PE2 array. At the lowest hierarchy of PE2 tree, an additional
PE2 accumulates the partial results. A 6-stage computing core with 8 PE1 and 8 PE2 is shown in
Figure 11(a), in which, the parallelism of PE1 and PE2 is set as N . 8 PE1 work in parallel and
produce 8 vectors in length N . Each PE2 in the “adder-tree” structure accumulates two vectors.
Buffers are placed between the hierarchies to support pipeline execution. The accumulation for
all PE1 results is acquired after the data flow reaches the bottom PE2. As a result, after RW EI /8
executions of the computing core, the first column of the output is acquired.

Since the size of the computing core is bounded by the device resource, a generic data flow
of the proposed computing core is shown in Figure 12. The pipeline stage M + 1 is determined
by the number of PE1, where the M stages are spent on computation within PE array and the 1
stage is spent on buffer access. A larger PE1 array only leads to a slightly deeper pipeline since
each hierarchy in “adder-tree” halves the output of PE1. The computing core enter IN IT IAL to
read input and weight elements in the buffer. In STAGE_1, PE1 array multiplies the correspond-
ing input columns with weight elements. In the rest STAGE, PE2 at each hierarchy reads the in-
termediate results from its higher-level hierarchy and does the accumulation. Such design can
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Fig. 11. (a) Computing core hierarchy. (b) Accelerator architecture overview.

Fig. 12. The data flow of the computing core.

maximize the multiplication parallelism and pipeline efficiency. By halving the partial results
at each STAGE, only loд(2)NP E1 + 2 pipeline stages are needed for the computing core. The
pipeline interval of the proposed computing core architecture can run at II=1 during on-board
execution.
Accelerator system design. While the memory footprint and the workload are largely reduced by
the proposed compression method, the compressed Transformer may still exceed FPGA capacity.
Therefore, an accelerator system design that includes modules such as data swapping, data comput-
ing, and running scheduler is needed. The proposed full system design is shown in Figure 11(b) in
consideration of off-chip memory (DDR), an input data buffer (bu fin), a weight data buffer (bu fwei ),
an output data buffer (bu fout ), PE schedule register, and the computing core. Each buffer utilizes
FPGA on-chip block-RAM (BRAM) and LUT-RAM to store the two-dimension data. At each on-
chip buffer to DDR interface, a dedicated streaming bus with ping-pong buffer is placed to support
continuous processing. The PE schedule register stores the data fetch information and the number
of executions (RW EI /NP E1) to get a single column of output and the whole output columns (CW EI ).
Per computing core execution, NP E1 partial results are accumulated. After RW EI /NP E1 executions,
a column of output is acquired. Therefore, after (RW EI /NP E1) ∗ CW EI execution, the full output
elements are acquired. By reading the execution information from PE schedule register, the corre-
sponding address of the input buffer, and the associated elements of weight buffer, the computing
core generates the full elements of the output. In this way, the proposed accelerator can be recur-
sively called to process the matrix multiplications in Transformer while minimizing the system
stall caused by transmission.
Accelerator buffer allocation. The size of three buffers can be determined by the compressed
Transformer size and the computing core. Among the six types of weights, Qw

layer
, Kw

layer
, Vw

layer
,

andOw are in the same size as Nhead ∗dk = dmodel in Transformer. And the size FFN 1w and FFN 2w

is quadruple of Qw
layer

, Kw
layer

, Vw
layer

, and Ow . Therefore, before compression, by allocating bu fwei

of size Rdmodel×dmodel , the accelerator can recursively process the computations related to all these
weights. During compression, the maximum size of Qw

layer
, Kw

layer
, Vw

layer
, Ow , FF1w , and FF2w is

determined by ratiocoarse in the coarse-grained pruning stage. Though fine-tune pruning unevenly
compresses the weights, after compression, the bu fwei of size Rdmodel×(dmodel ∗(1−r atiocoar se )) is able
to process different weights. After determining the size of bu fwei , the size of bu fin and bu fout
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can be determined. The first dimension of bu fin is N since height of the multiplicand of matrix
multiplications in Transformer is fixed at N . The second dimension of bu fin is dmodel which is the
same as bu fwei ’s first dimension. The first dimension of bu fout is N , which is consistent to bu fin .
The second dimension of bu fout is dmodel ∗ (1 − ratiocoarse ) which is the same as bu fwei ’s second
dimension. The buffer allocation summary is shown in Equation (3).

In this way, the matrix multiplications in Transformer such as X in ∗ Qw
layer

, X in ∗ Kw
layer

,

X in ∗ Vw
layer

, Q ∗ KT , QK ∗ V , Oattn
layer

∗ Ow , xF F N 1 ∗ FFN 1w , and xF F N 2 ∗ FFN 2w can be processed

via a pipeline processing pattern of streaming in, computing, and streaming out. When the on-
chip buffer size is abundant, the capacity of bu fwei can be expanded in its second dimension.
While the original part dmodel ∗ (1 − ratiocoarse ) is still used for weight streaming, the expansion
part of bu fwei can be used to cache selected weights on the chip to reduce off-chip transmission
overhead.

bu fwei [RW EI ][CW EI ] = bu fwei [dmodel ][dmodel ∗ (1 − ratiocoarse )]
bu fin[RI N ][CI N ] = bu fin[N ][dmodel ]
bu fout [ROU T ][COU T ] = bu fout [N ][dmodel ∗ (1 − ratiocoarse )]

(3)

Streaming interface design. As the Transformer’s input and part of the weights are stored in the
off-chip memory, the accelerator buffer design and transmission bandwidth are also optimized to
minimize the transmission latency. Ping-pong buffer is applied on bu fwei , bu fin , and bu fout , form-
ing bu fwei , bu fweiDB , bu fin , bu finDB , bu fout , and bu fout DB at the interface. The off-chip memory
transmission latency is hidden by alternately accessing the ping-pong buffers in two modes. Mode
1: off-chip to bu fwei and bu fin transmission, and bu fout to off-chip transmission while the PE ar-
ray reads/writes data from/to bu fweiDB , bu finDB , and bu fout DB . Mode 2: off-chip to bu fweiDB and
bu finDB transmission, and bu fout DB to off-chip transmission while the PE array reads/writes data
from/tobu fwei ,bu fin , andbu fout . In this way, the PE array access the ping-pong buffers alternately,
hiding the off-chip transmission latency. In addition to the ping-pong buffer, the streaming inter-
face bandwidth is also partitioned according to the buffer size. The streaming bandwidth forbu fwei ,
bu fin , and bu fout are assigned according to the ratio of a buffer capacity to total buffer capacity

(e.g. streaming bandwidth for bu fwei : Bwei = Btotal ∗
Capacitybwei

Capacitybufwei
+Capacitybufin

+Capacitybufout
).

Accelerator buffer partition. The input buffer (bu fin), weight buffer (bu fwei ), and the output
buffer (bu fout ) store two-dimension data via BRAM and LUTRAM. The buffers should also be care-
fully partitioned to support the parallel access from the computing cores. For input buffer bu fin ,
since PE1 array accesses multiple columns of input buffer simultaneously, the bu fin[RI N ][CI N ]
should be partitioned by parameter NP E1 in its second dimension. As each PE1 access all the
elements in a column of bu fin , the bu fin should be fully partitioned in its first dimension. For
weight buffer bu fw ei , since a PE1 access one element in bu fwei [RW EI ][CW EI ] and the PE1 ar-
ray access NP E1 elements in bu fwei simultaneously, bu fwei should be partitioned by parameter
NP E1 in its first dimension. For output buffer bu fout , as the last PE2 write its elements to the
first dimension bu fout [ROU T ][COU T ] simultaneously, bu fout should be fully partitioned in its first
dimension.
Accelerator running schedule. With the allocated three buffers and the computing core, the
accelerator can continuously process the matrix multiplications (aka Linear modules). The run-
ning schedule of the accelerator is shown in Figure 13. With the adopted ping-pong buffer, the
streaming of bu fin , bu fwei , and bu fout and the computing core work in parallel. In each itera-
tion of the accelerator, a matrix multiplication is processed. The streaming performance for bu fin ,
bu fwei , and bu fout is determined by the bandwidth of the streaming interface. As the buffers are
partitioned according to PE array’s parallelism, there is no data fetch delay for the computing
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Fig. 13. The accelerator running schedule.

core. Benefiting from the pipeline design, the computing latency (Latcomp ) in an iteration is deter-
mined by three aspects, pipeline depth Pipedepth (Latunit ), the number of executions for an output
column (RW EI /NP E1), and the number of output columns (CW EI ). The computing latency for an
accelerator iteration is described by Equation (4). At the run-time, the computing latency and
streaming latency may vary from iteration to iteration as the matrices have different sizes.

Latunit = Pipedepth = log2 NP E1 + 2

Latcomp = CW EI ∗ ceil
(
RW EI

NP E1

)
+ Latunit

(4)

7.2 Accelerator Analytical Model

As the parameters of attention mechanism vary in different applications while the DSP and LUT
resources are flexible among FPGAs, an analytical model is developed to determine the design
parameters of the accelerator and to analyze the system performance. The analytical model gives
an estimation of the accelerator resource utilization and performance. The parameters in Figure 8
are used to illustrate the analytical model. The number of PE1 (NP E1) is determined by DSP based

PE1 (N
dsp

P E1) and LUT based PE1 (N lut
P E1). In this model, the parallelism inside PE1 is set to thebu fin ’s

first dimension size N (RI N = N ). First, the N
dsp

P E1 can be determined as the number of DSPs in an
FPGA is fixed. After building the PE1 array in DSP, the number of PE2 can be determined (PE2

hierarchies=log2 N
dsp

P E1 + 1). Next, if the FPGA LUT resource is still available, more LUT can be
used in building PE1 and PE2 as INT8 operation is also efficient with FPGA LUT resources. The
accelerator computing core’s key parameters are summarized in Equation (5).

NP E1 = N
dsp
P E1
+ N lut

P E1

N
dsp
P E1
= f loor (2 ∗ Ndsp/N )

(5)

The latency of the computing core is determined by the depth of the computing core which
is log2 NP E1 + 2. The pipeline design and efficient data flow in the computing core achieve the
minimum pipeline interval (II=1) to maximize the throughput. The run-time latency Lat∗comp to

process a matrix at the run-time is determined as Lat∗comp = C
∗
W EI

∗ ceil(R
∗
W EI

NP E1
) + Latunit , in which,

C∗ and R∗ is the real size of the loaded weight at the run time.
As a result, the accelerator performance in processing a matrix can be modeled in Equation (6).

The bottleneck is determined by the worst performance among the computing core and the buffer
transmission. In Equation (6), Lat in

tr ans can be determined by Lat in
tr ans = R∗

I N
∗C∗

I N
∗ 8/Bin , in which,

Bin represents the streaming bandwidth assigned to bu fin . The Latwei
tr ans and Latout

tr ans can be ac-
quired similarly. Then, the system performance Latsys is determined by Latcomp and Lattr ans .

Lattr ans =max
(
Lat in

tr ans ,Lat
wei
tr ans ,Lat

out
tr ans

)
Latsys =max(Latcomp ,Lattr ans )

(6)
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Table 1. Transformer Parameters

Model Nenc Ndec head dk dmodel

Transformer 6 6 8 64 512

While the proposed computing core achieves ultimate parallelism and pipeline performance, an
adequate streaming bandwidth between off-chip and on-chip is also important. To avoid the system
stall caused by data transmission, the minimum bandwidth requirement of each interface is also
analyzed. After building the computing core and corresponding buffers, the required streaming
bandwidth can be determined as Bmin

in ≥ RI N ∗ CI N ∗ 8/Latcomp , Bmin
wei ≥ RW EI ∗ CW EI ∗ 8/Latcomp ,

and Bmin
out ≥ ROU T ∗COU T ∗ 8/Latcomp for bu fin , bu fwei , and bu fout , respectively.

8 EXPERIMENTS

In this section, we first evaluate the compression performance for Transformer on machine trans-
lation tasks. Then, we evaluate the accelerator performance on Xilinx ZCU102 FPGA.

8.1 Compression Algorithm Evaluation

Compressed model performance. We use two datasets from language translation, i.e., the
Multi30K [28] (a subset of WMT2014) and the IWSLT’17 [29], to evaluate the accuracy impact
from our memory footprint aware compression. The key parameters of Transformer are listed in
Table 1, which are consistent with the settings in [1, 6, 7]. The Transformer consists of 6 encoders
and 6 decoders. The self-attention consists of 8 heads with dk = 64 and dmodel=512. The compres-
sion, training, and quantization processes are performed via Pytorch.

The evaluation is performed targeting on dataset Multi30K in English-German (En-De) and
German-English (De-En) translation first. In Table 2, we report the achieved maximum compres-
sion ratio in the state-of-the-art works and our design that does not affect the accuracy. The Trans-
former is trained to get the baseline BLEU score first (29 for En-De and 25.8 for De-En). In En-De
task, HAT [7] achieves 73% compression and TransformerZip [6] achieves 50% compression. Our
method achieve 80% compression without accuracy loss, which is 7% and 30% higher than the state-
of-the-art works respectively. The model compressed by our method can be directly quantized to
INT8 without accuracy loss, achieving a final compression ratio of 95% (Ratio*). In De-En task,
we also achieve 80% compression. After applying post-training quantization, we achieve a final
compression ratio of 95%. As a result, the proposed compression method can reduce the number
of computing operations by 80% and the memory footprint by 95% in Transformer for both tasks.

We further verify our method in dataset IWSLT’17 for English-German (En-De) and German-
English (De-En) tasks. The baseline for the two tasks is trained as 13 for En-De and 15.5 for
De-En. We achieve 70% and 75% compression for En-De and De-En tasks, respectively. The post-
quantization does not affect the model accuracy and we finally achieve 92.5% and 93.75% compres-
sion ratio in the two tasks. As a result, the proposed compression method can reduce the number
of computations by 70%/75% and the memory footprint by 92.5%/93.75% in Transformer for the
two tasks.
Two-stage compression discussion. The two-stage compression process of En-De and De-En
tasks for Multi30K is shown in Figure 14. For both tasks, the incrcoarse is set to 10% in stage 1 and
incrf ine = 5% in stage 2. The accuracy is slightly improved at the early stage of stage 1 until reaching
a 50% compression ratio for both tasks. However, a significant accuracy drop is observed when
increasing the compression ratio from 50% to 60% in stage 1, which is shown by the red line. To
prevent the sharp drop in the accuracy, the compression process exits stage 1 at a 50% compression
ratio and enters stage 2. It is observed that the accuracy slightly drops when the compression ratio
increases from 50% to 80% after entering stage 2 in both tasks. Further increasing the compression
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Table 2. Performance of Compression and Quantization

# Param
(MB)

Compression
Ratio (%)

BLEU
Quantized

BLEU
Compression

Ratio* (%)

Multi30K
En-De

Transformer 176 - 28.9 - -
HAT [7] 48 73% (-7%) 28.4 - -

TransformerZip [6] 86 50% (-30%) 26.4 - -
Ours 8.8 80% 29 29 95%

De-En
Transformer 176 - 26 - -

Ours 8.8 80% 25.8 25.8 95%

IWSLT’17
En-De

Transformer 176 - 13 - -
Ours 13.2 70% 13 13 92.5%

De-En
Transformer 176 - 15.5 - -

Ours 11 75% 15.5 15.5 93.75%

Fig. 14. Accuracy degradation during compression. (a) Multi30K En-De task. (b) Multi30K De-En task.

ratio incur a sharp drop in the accuracy again. The compression stops with a compression ratio of
80%. Therefore, the overall compression ratio is 80% and the ratiocoarse is 50%.
Off-line compression overhead discussion. The off-line compression overhead consists of
three parts, the weight analysis, the coarse pruning in stage 1, and the fine-tune pruning in stage
2. The weight analysis per Transformer encoder or decoder is about 22 GPU hours on 2080Ti GPU.
The compression time for a given compression ratio is about 80 GPU hours on 2080Ti GPU in stage
1 or stage 2. When linearly exploring the compression ratio that we can achieve, the off-line com-
pression time is about 1000 GPU hours for Multi30K tasks, 900 GPU hours for IWSLT’17 En-De
task, and 1000 GPU hours for IWSLT’17 De-En task. However, the weight analysis of Transformer
encoders and decoders can be executed in parallel; the exploration in both stages 1 and 2 can be
executed in parallel. This results in less than a total of 200 hours wall-clock time.
Compression performance exploration. The proposed compression techniques show superior
performance when compared with the existing designs. We explore the impact of weight dimen-
sion variation on the task IWSLT’17 En-De, which is the most challenging task (i.e. the lowest
baseline BLEU and lowest achieved compression ratio) among the four tasks we evaluated. There-
fore, we explore the compression performance with different weight variations for task IWSLT’17
En-De. The exploration results are shown in Figure 15(a). In this figure, the x-axis represents the
overall compression ratio which combines stage 1 and stage 2. The incrf ine is set to 2% per step.
The y-axis shows the evaluated BLEU score at different compression ratios (the baseline BLEU
score is 13). We explore ‘Variation Large’, which exits stage 1 at 20% compression ratio, leaves an
80% space for stage 2 fine-tuning; ‘Variation Small’, which exits stage 1 at 30% compression ratio,
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Fig. 15. (a) The compression performance exploration with different weight dimension control for task

IWSLT’17 En-De. (b) The compression performance with more fine-grained incrf ine for task IWSLT’17

En-De.

leaves a 70% space for stage 2 fine-tuning. We can observe that both ‘Variation Large’ and ‘Varia-
tion Small’ achieve higher compression ratio without accuracy drop while the extreme variation
control achieves 70% which is reported in Table. 2. The ‘Variation Large’ shows better performance
when compared with ‘Variation Small’ and it can reach an 80% overall compression ratio with-
out accuracy drop. ‘Variation Small’ reaches a 76% overall compression without accuracy drop.
Therefore, we can achieve better compression performance at the cost of slightly larger weight
dimension variation.

We also explore the trend of accuracy drop by using more compression ratios with a smaller step
size. Instead of increasing by 5% (incrf ine ) in stage 2, we explore the accuracy drop by increasing
the compression ratio by the step size of 2%, 1%, and 0.5%. The accuracy drop trend is shown in
Figure 15(b). In this Figure, we explore the task IWSLT’17 En-De which originally achieves a 70%
compression ratio with a base BLEU score of 13. In this exploration, the compression still exits stage
1 at 50% compression ratio and enters stage 2 with incrf ine = 2%. We further reduce the incrf ine to
0.5% when approaching the 75% overall compression ratio. The proposed compression technique
can still maintain the BLEU over 13 until reaching 74.5% compression ratio. A drastic accuracy
drop is observed at 75% compression ratio. Therefore, we can achieve a greater compression ratio
even without accuracy drop by adopting more fine-grained incrf ine in compression stage 2.
Compression impact on buffer size. As a result of the compression, the weight size upper bound
for Qw

layer
, Kw

layer
, Vw

layer
, Ow

layer
, FFN 1w , and FFN 2w within Transformer is 50% of its original

size. Therefore, the weight buffer bu fwei size is early estimated as bu fwei [512][256]. The input
buffer bu fin size is early estimated as bu fin[100][512]. The output buffer bu fout size is early de-
termined as bu fout [100][256]. In the buffer dimension, 100 is the value of N , which is the length
of input sentence. The real on-chip buffer allocation will be co-determined with computing core
parameters.

8.2 Hardware Accelerator Evaluation

An accelerator in INT8 towards Transformer compression ratiocoarse = 50% is built with Xilinx
HLS and synthesized in Vivado (v2019.1). The accelerator performance is tested with Vivado SDK.
Computing core implementation. On ZCU102 FPGA, we build the computing core with 74

PE1 (50 N
dsp

P E1 and 24 N lut
P E1) and 73 PE2. The parallelism of each PE is 100 which is the maximum

sentence length of the dataset. In this design, the ideal “adder-tree” is fine-tuned in selected hierar-
chies to fit 74 PE1 outputs into PE2 array’s data flow, resulting in a 10 stage pipeline with pipeline
interval II=1. The resource utilization breakdown for PE1 and PE2 is shown in Table 3. 50 DSPs are
used in building a PE1dsp and 5000 LUTs are used in building PE1lut . 1500 LUTs are used in build-
ing a PE2. The developed computing core fully utilizes the FPGA DSP and LUT resources and can
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Table 3. Processing Element Resource Breakdown

Number Parallelism DSP LUT FF BRAM

PE1dsp 50 100 50 - 1608 0

PE1lut 24 100 - 5000 1608 0

PE2 73 100 - 1500 2400 0

Computinд core 1 7400 2500 - - 0

Table 4. Accelerator Buffer Allocation

bu fin bu fw ei bu fout

Rows 100 518 100

Columns 518 (256+2048) 256

Stream. Bus 〈1, 2, 1〉

Table 5. Accelerator Performance on ZCU102

Resource
Bus.
〈〉

Freq.
(MHz)

Comp.
Through.

End2End
Through.

Latcomp

(ms)
Latsys

(ms)
DSP LUT BRAM FF

Avail 2520 274080 912 548160

design1 99.3% 91.8% 28% 29.3% 〈1, 2, 1〉 150 1.87Tops 794Gops 0.014 0.033

design2 99.3% 91.9% 77% 26.4% 〈1, 2, 1〉 125 1.7Tops 845Gops 0.015 0.031

design2* 99.3% 91.9% 77% 26.4% 〈2, 0, 2〉 125 1.7Tops 1.4Tops 0.015 0.019

conduct 7400 multiply-accumulate operations per cycle. The theoretical throughput performance
of the computing core is 2.22 Tops at 150 MHz.
Accelerator buffer allocation. The buffer allocation is conducted by considering both the com-
puting core and the compressed Transformer size. The parameters of the allocated buffer bu fin ,
bu fwei , andbu fout in the accelerator are shown in Table 4. The buffers are implemented by BRAMs
and LUTRAMs. Since 74 PE1 are built, the first dimension of bu fwei and the second dimension of
bu fin is rounded to 518 for ease of PE array access. The second dimension of bu fwei is selected as
256 since the ratiocoarse is 50%. After building the accelerator, the rest BRAMs on ZCU102 FPGA
is utilized to expand the bu fwei in its second dimension. The expansion size of bu fwei is 2048,
which can store 8.4Mb weights on the chip. At the interface between ZCU102 on-chip memory
and the off-chip DDR, four streaming buses (128bit each) are available. Therefore, the streaming
interface is determined according to buffer size: one streaming bus for bu fin ; two streaming buses
for bu fwei ; one streaming bus for bu fout . The streaming bus allocation is represented by 〈1, 2, 1〉
in the table.
Accelerator performance analysis. Three versions of the accelerator are implemented to show
the superiority of our design. Design1 is built with no bu fwei expansion. Design2 is built with
bu fwei expansion. Design2* is built with bu fwei expansion and streaming interface tuning. In the
three designs, we show the computing core’s peak throughput (Computing Throughput), the ac-
celerator system throughput considering data transfer (End2End Throughput), the computing la-
tency (Latcomp ) in processing a unit matrix multiplication (bu fin[100][518], bu fin[518][256], and
bu fout [100][256]), and the end-to-end latency (Latsys ) in processing the unit matrix multiplication.

Design1 explores the highest throughput that the computing core can achieve. With the mini-
mum active buffer, it achieves the highest working frequency at 150 MHz working in pure stream-
ing in, computing, and streaming out mode (stream-in processing). It fully utilizes the DSP and
LUT resource to build computing core, and 28% of BRAM resource to build buffers. The streaming
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Table 6. End-to-end Accelerator Performance on Real Transformer

Standard Transformer (Our Work)

Sparsity Gop DSP LUT BRAM FF Freq. (MHz) Latency Area Efficiency

80% 1.29
2500 251725 699 142723 125

6.8ms 0.076 (6.3x)
75% 1.65 7.2ms 0.092 (7.6x)
70% 2.04 8.4ms 0.097 (8.1x)

Shallow Transformer (Existing design [8])

- 0.205 5647 268933 - 304012 - 2.94ms 0.012

Standard Transformer (Existing design [30])

- - 129 471563 498 217859 200 8.9ms -

interface is assigned as 〈1, 2, 1〉. At the run-time, design1’s computing throughput is measured at
1.87 Tops. This is only slightly lower than its theoretical value due to the initialization of FPGA IP
cores. The end-to-end processing throughput is 794 Gops. The latency Latcomp is 0.014ms and the
Latsys is 0.033ms . The significantly lowered end-to-end throughput is due to the limited streaming
interface bandwidth, which causes significant computing core stall. If the bandwidth is sufficient
to support the data consumption of the computing core, the design1 can work under 150 MHz with
a throughput of 1.87 Tops.

Design2 explores the generic acceleration solution which partially stores the model on the chip.
It supports “stream-in processing” and “in-situ processing” modes, in which, “in-situ processing”
consumes the on-chip weights. Compared with design1, design2 utilizes the spare BRAM resource
to expand the bu fwei capacity and 77% BRAMs are utilized. Therefore, 8.5Mb spare buffer spaces
are generated to keep selected weights on the chip. With more active buffer, design2 works un-
der 125 MHz. By partially storing a model on the chip, only the unbuffered weights need to be
streamed in. The streaming interface is assigned as 〈1, 2, 1〉 to support both modes. We report “in-
situ processing” performance in the table. The computing throughput is 1.7 Tops. The end-to-end
throughput is 845 Gops. The latency Latcomp is 0.015 ms . The Latsys is 0.031 ms . In this mode,
the end-to-end system performance is moderately improved as bu fwei still occupies the stream-
ing interface, leaving limited streaming bandwidth for other buffers. When working in “stream-in
processing”, design2’s end-to-end throughput is slightly lower than design1’s due to the lower
working frequency. Therefore, in design2, the overall performance can benefit from less transmis-
sion with the on-chip weights.

Design2* explores the accelerator solution for the small model that can be fully stored on the
chip, which works in pure “in-situ processing”. Design2* tunes the streaming interface to 〈2, 0, 2〉,
more streaming bandwidth is assigned to bu fin and bu fout as no weight transfer is needed. After
eliminating weight transfer, the end-to-end processing throughput is greatly improved to 1.4 Tops.
The small gap between end-to-end throughput and computing throughput is due to the transmis-
sion initialization between DDR and FPGA.

To mitigate the gap between the computing throughput and end-to-end throughput, based on
the analytical model for the streaming interface, the minimum bandwidth forbu fin needs to be 210
bit/cycle, the minimum bandwidth for bu fwei needs to be 539 bit/cycle, the minimum bandwidth
for bu fout needs to be 104 bit/cycle. Such bandwidth settings can fulfill the throughput of our
computing core.
Accelerator performance on real-life Transformer. We accelerate the compressed Trans-
former models discussed in Table 2, in which, 80%, 75%, and 70% compression ratios are achieved.
This reduces the number of multiplyaccumulate operations to 1.29, 1.65, and 2.04 Giga Opera-
tions (Gop). Due to the size of the compressed models, design2 is adopted to accelerate the three
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Table 7. Cross-platform Comparison

FPGA
ZCU102

GPU
2070S

GPU
Jetson TX2

CPU
9700K

ARM
A57

Latency (ms) 6.8 0.9 50 7 1350

Gop/s 190.1 1438 25.8 184.9 0.95

Power (W) 22.5 215 6.5 185 4.5

Energy Effiency (Gops/watt) 8.44 6.68 3.98 1.18 0.21

compressed models. The breakdown of accelerator resource utilization is listed in Table 6. In pro-
cessing a full encoder layer to decoder layer inference, we achieve the latency of 6.8ms , 7.2ms , and
8.4ms for the three compression degrees. In this table, we also list the performance of the state-of-
the-art Transformer accelerator [8] and [30]. [8] accelerated a shallow Transformer with 5.76MB
weights and 0.205 Gop. Their accelerator is built on VCU118 FPGA in fix-point data via Vivado
HLS, in which, 5647 DSPs are utilized. It achieves 2.94ms in accelerating the shallow Transformer.
We compare the FPGA area efficiency via Gop/Latency/Ndsp for fair comparison. As shown in
the table, our accelerator achieves 6.3x, 7.6x, and 8.1x better efficiency at different compression
ratios, which is significantly higher than the state-of-the-art accelerator [8]. Design [30] is built
on XCVU13P FPGA in INT8 via hardware description language (HDL). The performance is mea-
sured by simulation in Vivado. We report its performance in accelerating a full Transformer, which
achieves 8.9ms in latency. Its latency is significantly higher than our design. Furthermore, the de-
sign [30] can hardly utilize its device resource, causing severe resource under-utilization (27.% LUT
utilization, 36.5% BRAM utilization, and 2% DSP utilization).
Performance trade-off with loosen weight dimension control. In the previous section, com-
pression performance exploration, we explore the performance trade-off in weight dimension vari-
ation and compression ratio. In this section, we also explore the performance trade-off between the
accelerator throughput and the weight dimension variation when we achieve an 80% compression
ratio with ‘Variation Large’. We implement the accelerator similar to design1, in which, the buffer
size is re-designed to (bu fin[100][518], bu fin[518][410], and bu fout [100][410]). As a result of the
larger buffer, in processing the same matrix which is evaluated in Table 5, we achieve the work-
ing frequency, computing throughput, end-to-end throughput, Latcomp , and Latsys in 140 MHz,
1.77 Tops, 757 Gops, 0.015ms , 0.035ms , respectively. We can see that the accelerator performance
is only slightly influenced by the larger weight dimension variation. This is because the weight
buffer is expanded in the second dimension, which does not need to be partitioned to support the
computing core. Thus, the timing performance of the placement and routing during the synthesis
is not significantly influenced by the larger weight buffer. However, such strategy leads to severe
buffer under-utilization in processing different matrices in the Transformer.
Cross-platform performance comparison. We compare the energy efficiency among FPGA
ZCU102, GPU 2070 Super, GPU Jetson TX2, CPU i7-9700K, and ARM A57 in processing the Trans-
former with an 80% compression ratio in Table 7. On all platforms, the end-to-end throughput
performance (Gop/s) is influenced by the extremely low compression ratio caused small matrix
operations. Desktop GPU wins in latency due to its extreme computing power and the large batch
size. Its latency is measured by batch processing time divided by the batch size. Our design out-
performs mobile GPU and ARM in latency as we achieve extreme high computing parallelism for
the pruned Transformer. The computing inefficiency caused by the small and different matrix is
resolved by the proposed computing pattern and accelerator architecture. The desktop CPU has
longer but comparable latency with our design. This is due to the high operating frequency of the
CPU and its high-speed main memory. The desktop CPU 9700K with a 12MB cache works under
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5.0GHz and is supported by a 3200MHz DDR memory. The working power of the CPU itself is
184.9W on average, while our design works under 22.5W on average. Among all platforms, our
design achieves significantly higher energy efficiency (Gops/watt) than other platforms. We
achieve 1.26x, 2.1x, 7x, and 40x improvement when compared with GPU 2070 Super, GPU Jetson
TX2, CPU i7-9700K, and ARM A57 respectively.

9 CONCLUSION

In this work, we propose an algorithm-hardware co-design for the attention mechanism on FPGA.
The proposed compression method effectively compresses the attention mechanism by 95% and
minimizes the dimension size variation among weights. The proposed unified computing pattern
eliminates the inefficiency caused by the sparse attention mechanism. As a result of the co-design,
the developed hardware accelerator fully utilizes the FPGA’s DSP and LUT resources, achieving a
run-time computing throughput of 1.87 Tops.
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